Skip to main content
Log in

Spatial pattern of habitat quality modulates population persistence in fragmented landscapes

  • Original Article
  • Published:
Ecological Research

Abstract

Habitat quality is one of the important factors determining population dynamics and persistence, yet few studies have examined the effects of spatial heterogeneity in within-patch habitat quality. In this paper, we use a spatially explicit agent-based model to investigate how habitat fragmentation and spatial pattern of within-patch habitat quality affect population dynamics and long-term persistence. We simulate three levels of habitat fragmentation (ranges from continuous to highly fragmented) and three types of spatial patterns in habitat quality within patches (i.e., negatively autocorrelated, randomly distributed, and positively autocorrelated). Hypothetical species differ in their niche specialization. The results demonstrate explicitly that the spatial pattern of within-patch habitat quality plays an important role in modulating the effects of habitat fragmentation on populations. Populations become less variable in size, and experience lower probability of extinction in landscapes with positively autocorrelated within-patch habitat quality. Specifically, specialized species are more vulnerable to habitat fragmentation, but this vulnerability is greatly mitigated by positively autocorrelated habitat quality within patches, in other words, exhibiting higher resistance to habitat fragmentation. The findings of this study suggest that managing habitat quality in existing habitat remnants is important to preserve species in habitats undergoing fragmentation, particularly for those with specialized habitat requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods Instrum 37:379–384

    Article  Google Scholar 

  • Clarke RT, Thomas JA, Elmes GW, Hochberg ME (1997) The effects of spatial patterns in habitat quality on community dynamics within a site. Proc R Soc Lond B Biol Sci 264:347–354

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Diffendorfer JE, Gaines MS, Holt RD (1995) Habitat fragmentation and movements of 3 small mammals (Sigmodon, Microtus, and Peromyscus). Ecology 76:827–839

    Article  Google Scholar 

  • Dormann C, McPherson J, Araujo M, Bivand R, Bolliger J, Carl G, Davies R, Hirzel A, Jetz W, Kissling W (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. doi:10.1017/s1464793105006949

    Article  PubMed  Google Scholar 

  • Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610

    Article  Google Scholar 

  • Fahrig L (1998) When does fragmentation of breeding habitat affect population survival? Ecol Model 105:273–292. doi:10.1016/s0304-3800(97)00163-4

    Article  Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56

    Article  PubMed  Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716. doi:10.1046/j.1523-1739.2002.00539.x

    Article  Google Scholar 

  • Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landsc Ecol 24:863–877. doi:10.1007/s10980-009-9364-6

    Article  Google Scholar 

  • Fujiwara M (2009) Environmental stochasticity encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • González-Megías A, Gómez JM, Sánchez-Piñero F (2005) Consequences of spatial autocorrelation for the analysis of metapopulation dynamics. Ecology 86:3264–3271

    Article  Google Scholar 

  • Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42:17–38. doi:10.1111/j.1095-8312.1991.tb00549.x

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251. doi:10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Johst K, Drechsler M (2003) Are spatially correlated or uncorrelated disturbance regimes better for the survival of species? Oikos 103:449–456. doi:10.1034/j.1600-0706.2003.12770.x

    Article  Google Scholar 

  • Johst K, Roland B, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270

    Article  Google Scholar 

  • Kindvall O (1996) Habitat heterogeneity and survival in a bush cricket metapopulation. Ecology 77:207–214

    Article  Google Scholar 

  • Klok C, De Roos AM (1998) Effects of habitat size and quality on equilibrium density and extinction time of Sorex araneus populations. J Anim Ecol 67:195–209. doi:10.1046/j.1365-2656.1998.00186.x

    Article  Google Scholar 

  • Kolasa J, Li B-L (2003) Removing the confounding effect of habitat specialization reveals the stabilizing contribution of diversity to species variability. Proc R Soc Lond B Biol Sci 270:S198–S201. doi:10.1098/rsbl.2003.0059

    Article  Google Scholar 

  • Lawler JJ, Aukema JE, Grant JB, Halpern BS, Kareiva P, Nelson CR, Ohleth K, Olden JD, Schlaepfer MA, Silliman BR, Zaradic P (2006) Conservation science: a 20-year report card. Front Ecol Environ 4:473–480. doi:10.1890/1540-9295(2006)4[473:csayrc]2.0.co;2

    Article  Google Scholar 

  • Levin SA (2009) The Princeton guide to ecology. Princeton University Press, Princeton

    Google Scholar 

  • Lloyd HUW (2008) Influence of within-patch habitat quality on high-Andean Polylepis bird abundance. Ibis 150:735–745. doi:10.1111/j.1474-919X.2008.00843.x

    Article  Google Scholar 

  • Matlack GR, Leu NA (2007) Persistence of dispersal-limited species in structured dynamic landscapes. Ecosystems 10:1287–1298. doi:10.1007/s10021-007-9097-9

    Article  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi:http://www.nature.com/nature/journal/v454/n7200/suppinfo/nature06922_S1.html

    Google Scholar 

  • Murphy DD, Freas KE, Weiss SB (1990) An environment-metapopulation approach to population viability analysis for a threatened invertebrate. Conserv Biol 4:41–51

    Article  Google Scholar 

  • Noon BR, Biles CM (1990) Mathematical demography of spotted owls in the Pacific Northwest. J Wildl Manag 54:18–27

    Article  Google Scholar 

  • Olejnik S, Algina J (2003) Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods 8:434–447

    Article  PubMed  Google Scholar 

  • Pigliucci M (2001) Environmental heterogeneity: temporal and spatial eLS. Wiley, London

    Google Scholar 

  • Pike N, Tully T, Haccou P, Ferriere R (2004) The effect of autocorrelation in environmental variability on the persistence of populations: an experimental test. Proc R Soc Lond B Biol Sci 271:2143–2148. doi:10.1098/rspb.2004.2834

    Article  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Pulliam HR, Dunning JB, Liu J (1992) Population dynamics in complex landscapes: a case study. Ecol Appl 2:165–177

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing, version 2.13.0. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191. doi:10.1017/s1367943004001313

    Article  Google Scholar 

  • Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14:361–366. doi:10.1016/s0169-5347(99)01664-x

    Article  PubMed  Google Scholar 

  • Runge Jonathan P, Runge Michael C, Nichols James D (2006) The role of local populations within a landscape context: defining and classifying sources and sinks. Am Nat 167:925–938

    Article  PubMed  CAS  Google Scholar 

  • Saupe D (1988) Algorithms for random fractals. In: Petigen HO, Saupe D (eds) The science of fractal images. Springer, Berlin Heidelberg New York, pp 71–113

    Chapter  Google Scholar 

  • Shaver GR (2005) Spatial heterogeneity: past, present, and future. In: Lovett GM, Turner MG, Jones CG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, Berlin Heidelberg New York, pp 443–449

    Chapter  Google Scholar 

  • Stacey PB, Taper M (1992) Environmental variation and the persistence of small populations. Ecol Appl 2:18–29

    Article  Google Scholar 

  • Stoddard ST (2010) Continuous versus binary representations of landscape heterogeneity in spatially-explicit models of mobile populations. Ecol Model 221:2409–2414. doi:10.1016/j.ecolmodel.2010.06.024

    Article  Google Scholar 

  • Stouffer PC, Bierregaard RO (1995) Effects of forest fragmentation on understorey hummingbirds in Amazonian Brazil. Conserv Biol 9:1085–1094

    Article  Google Scholar 

  • Talley TS (2007) Which spatial heterogeneity framework? Consequences for conclusions about patchy population distributions. Ecology 88:1476–1489

    Article  PubMed  Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc Royal Soc B Biol Sci 267:139–145

    Article  CAS  Google Scholar 

  • Tyre AJ, Possingham HP, Lindenmayer DB (1998) Modelling dispersal behaviour on a fractal landscape. Environ Model Softw 14:103–113. doi:10.1016/S1364-8152(98)00062-0

    Article  Google Scholar 

  • Villard MA, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol: J Soc Conserv Biol 13:774–783

    Article  Google Scholar 

  • Wiegand T, Moloney K, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627

    Article  PubMed  Google Scholar 

  • Wiegand T, Revilla E, Moloney KA (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121

    Article  Google Scholar 

  • Wiens JA, Stenseth NC, Van Horne B (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL

  • With K, Crist T (1995) Critical thresholds in species’ responses to landscape structure. Ecology 76:2446–2459 (citeulike-article-id:6695871)

    Article  Google Scholar 

  • With KA, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Article  Google Scholar 

  • Wu J (2009) Ecological dynamics in fragmented landscapes. In: Levin SA (ed) Princeton guide to ecology. Princeton University Press, Princeton, pp 438–444

    Google Scholar 

Download references

Acknowledgments

We greatly thank the editor and two anonymous reviewers for their insightful remarks. This work was supported by the Erasmus Mundus External Co-operation Window (EMEWC) Programme of the European Union and co-funded by the ITC Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Ye.

Appendix 1: Summaries of factorial ANOVAs on population response variables

Appendix 1: Summaries of factorial ANOVAs on population response variables

See Tables 3 and 4.

Table 3 Factorial ANOVAs on population size and temporal variation in population size (CV) of species varying in niche-width and subjected to habitat fragmentation and spatial variation in habitat quality within patches
Table 4 Factorial ANOVAs on mean mortality rate of individuals and mean habitat quality of cells occupied by populations varying in niche-width and subjected to habitat fragmentation and spatial variation in habitat quality within patches

About this article

Cite this article

Ye, X., Wang, T. & Skidmore, A.K. Spatial pattern of habitat quality modulates population persistence in fragmented landscapes. Ecol Res 28, 949–958 (2013). https://doi.org/10.1007/s11284-013-1077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1077-2

Keywords

Navigation