Skip to main content
Log in

Deforestation in central Chile causes a rapid decline in landscape connectivity for a forest specialist bird species

  • Original Article
  • Published:
Ecological Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The abundance of woodland birds in fragmented forest landscapes may depend on the properties of patch networks. Understanding the consequences of deforestation on woodland birds, therefore, necessarily requires determining which changes in landscape structure make a major contribution to the degradation and subdivision of patch networks. In this study, we addressed how accelerated deforestation in central Chile has modified the landscape structure and function for thorn-tailed rayaditos—a woodland specialist bird. Using a graphical approach based on the habitat use and movement patterns of rayaditos, we quantified the reduction of the internal connectivity of components (i.e., connected patch networks) in the last two decades and determined the main mechanisms responsible for this connectivity loss. Forest cover decreased 61.7 % between 1989 and 2009. The component size, the fraction of components with ≥1 occupied patches and the number of patches per component experienced a large decline during the study period. Over time, most forest cover (ca. 80 %) was contained in only two components. The connectivity of components decreased steeply by 90 %. Only the loss of large patches made a highly significant contribution to explaining changes in connectivity, while the removal of stepping stones was marginally significant. The conversion of forest both to shrubland and to peri-urban areas were the only land-use variables explaining connectivity change with effects that changed over time. Conservation measures to ensure persistence of rayaditos populations in central Chile should be focused on the retention of key elements for connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson E, Bodin Ö (2009) Practical tool for landscape planning? An empirical investigation of network based models of habitat fragmentation. Ecography 32:123–132

    Article  Google Scholar 

  • Armesto JJ, Martínez JA (1978) Relationships between vegetation structure and slope aspect in the Mediterranean region of Chile. J Ecol 66:881–889

    Article  Google Scholar 

  • Armesto JJ, Picket STA (1985) A mechanistic approach to the study of succession in the Chilean matorral. Rev Chil Hist Nat 58:9–17

    Google Scholar 

  • Awade M, Metzger JP (2008) Using gap-crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation. Aust Ecol 33:863–871

    Article  Google Scholar 

  • Betts MG, Forbes GJ, Diamond AW, Taylor PD (2006) Independent effects of fragmentation on forest songbirds: an organism-based approach. Ecol Appl 16:1076–1089

    Article  PubMed  Google Scholar 

  • Binzenhöfer B, Bierdermann R, Settele J, Schröder B (2008) Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus. Ecol Res 23:259–269

    Article  Google Scholar 

  • Bodin Ö, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landsc Ecol 22:31–44

    Article  Google Scholar 

  • Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405

    Article  Google Scholar 

  • Bodin Ö, Tengö M, Norman A, Lundberg J, Elmqvist T (2006) The value of small size: loss of forest patches and ecological thresholds in southern Madagascar. Ecol Appl 16:440–451

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference. Springer, Berlin

    Google Scholar 

  • Chavez PS (1996) Image-based atmospheric corrections. Revisited and improved. Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Chetkiewicz CL, St Clair CC, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37:317–342

    Article  Google Scholar 

  • Chuvieco E (2002) Teledetección Ambiental: la observación de la Tierra desde el Espacio. Ariel Ciencia, Barcelona

    Google Scholar 

  • CONAF-CONAMA-BIRF (1999) Catastro y evaluación de recursos vegetacionales nativos de Chile. Informe Nacional con Variables Ambientales. Corporación Nacional Forestal, Santiago

    Google Scholar 

  • Dolman PM, Hinsley SA, Bellamy PE, Watts K (2007) Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149:146–160

    Article  Google Scholar 

  • Figueroa JA, Jaksic FM (2004) Seed bank and dormancy in plants of the Mediterranean region of central Chile. Rev Chil Hist Nat 77:201–215

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Fuentes ER (1994) Qué futuro tienen nuestros bosques? hacia la gestión sustentable del paisaje del centro y sur de Chile. Ediciones Universidad Católica de Chile, Chile

    Google Scholar 

  • Fuentes ER, Otaiza RD, Alliende MC, Hoffmann AJ, Poiani A (1984) Shrub clumps of the Chilean matorral vegetation: structure and possible maintenance mechanisms. Oecologia 62:405–411

    Article  Google Scholar 

  • Fuentes ER, Hoffmann AJ, Poiani A, Alliende MC (1986) Vegetation change in large clearings: patterns in the Chilean matorral. Oecologia 68:358–366

    Article  Google Scholar 

  • Fuentes ER, Avilés R, Segura A (1989) Landscape change under indirect effects of human use: the savanna of Central Chile. Landsc Ecol 2:73–80

    Article  Google Scholar 

  • Haila Y (1983) Land birds on northern islands: a sampling metaphor for insular colonization. Oikos 41:334–351

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hinsley SA (2000) The costs of multiple patch use by birds. Landsc Ecol 15:765–775

    Article  Google Scholar 

  • Jaksic FM (2001) Spatiotemporal variation patterns of plants and animals in San Carlos de Apoquindo, central Chile. Rev Chil Hist Nat 74:477–502

    Article  Google Scholar 

  • Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc Ecol 12:185–197

    Article  Google Scholar 

  • Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:4. http://www.consecol.org/vol1/iss1/art4/

  • Krawchuk MA, Taylor PD (2003) Changing importance of habitat structure across multiple spatial scales for three species of insects. Oikos 103:153–161

    Article  Google Scholar 

  • Laita A, Mönkkönen M, Kotiaho JS (2010) Woodland key habitats evaluated as part of a functional reserve network. Biol Conserv 143:1212–1227

    Article  Google Scholar 

  • Lampila P, Mönkkönen M, Desrochers A (2005) Demographic responses by birds to forest fragmentation. Conserv Biol 19:1537–1546

    Article  Google Scholar 

  • Lee M, Fahrig L, Freemark K, Currie DJ (2002) Importance of patch scale vs. landscape scale on selected forest birds. Oikos 96:110–118

    Article  Google Scholar 

  • Lillesand TM, Keifer RW (1994) Remote sensing and image interpretation, 4th edn. Wiley, New York

    Google Scholar 

  • Lindenmayer DB, Luck G (2005) Synthesis: thresholds in conservation and management. Biol Conserv 124:351–354

    Article  Google Scholar 

  • Lindenmayer DB, Possingham HP (1996) Modelling the inter-relationships between habitat patchiness, dispersal capability and metapopulations persistence of the endangered species, Leadbeater’s possum, in south-eastern Australia. Landsc Ecol 11:79–106

    Article  Google Scholar 

  • Lindenmeyer DB, Fisher J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, Washington, DC

    Google Scholar 

  • Maciusik B, Lenda M, Skorka P (2010) Corridors, local food resources, and climatic conditions affect the utilization of the urban environment by the Black-headed Gull Larus ridibundus in winter. Ecol Res 25:263–272

    Article  Google Scholar 

  • MacNally R, Bennett AF (1997) Species-specific predictions of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria, Australia. Biol Conserv 82:147–155

    Article  Google Scholar 

  • Matthysen E, Lens L, Van Dongen S, Verheyen GR, Wauters LA, Adriaensen F, Dhondt AA (1995) Diverse effects of forest fragmentation on a number of animal species. Belg J Zool 125:175–183

    Google Scholar 

  • Mayer C, Schiegg K, Pasinelli G (2009) Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol Ecol 18:2353–2364

    Article  PubMed  CAS  Google Scholar 

  • Minor E, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782

    Article  PubMed  Google Scholar 

  • Moreno J, Merino S, Vásquez RA, Armesto JJ (2005) Breeding biology of the thorn-tailed rayadito (Furnariidae) in south-temperate rainforests of Chile. Condor 107:69–77

    Article  Google Scholar 

  • Moreno J, Merino S, Lobato E, Rodríguez-Gironés MA, Vásquez RA (2007) Sexual dimorphism and parental roles in the Thorn-tailed Rayadito (Furnariidae). Condor 109:312–320

    Article  Google Scholar 

  • Mortelliti A, Fagiani S, Battisti C, Capizzi D, Boitani L (2010) Independent effects of habitat loss and structural connectivity on landscape occupancy of forest dependent birds: when are hedgerows important? Divers Distrib 16:941–951

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J For Res 127:23–31

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rolstad J, Wegge P (1987) Distribution and size of capercaillie leks in relation to old forest fragmentation. Oecologia 72:389–394

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416

    Article  Google Scholar 

  • Schipper AM, Koffijberg K, van Weperen M, Atsma G, Ragas AMJ, Hendriks AJ, Leuven RSEW (2011) The distribution of a threatened migratory bird species in a patchy landscape: a multi-scale analysis. Landsc Ecol 26:397–410

    Article  Google Scholar 

  • Schooley RL, Wiens JA (2004) Movements of cactus bugs: patch transfers, matrix resistance, and edge permeability. Landsc Ecol 19:801–810

    Article  Google Scholar 

  • Schulz JJ, Cayuela L, Echeverria C, Salas J, Rey-Benayas JM (2010) Monitoring land cover change of the dryland forest landscape of central Chile (1975–2008). Appl Geogr 30:436–447

    Article  Google Scholar 

  • Shanahan DF, Possingham HP (2009) Predicting avian patch occupancy in a fragmented landscape: do we know more than we think? J Appl Ecol 46:1026–1035

    Article  Google Scholar 

  • Shimazaki H, Tamura M, Darman Y, Andronov V, Parilov MP, Nagendran M, Higuchi H (2004) Network analysis of potential migration routes for Oriental White Storks (Ciconia boyciana). Ecol Res 19:683–698

    Article  Google Scholar 

  • Soga M, Koike S (2012) Relative importance of quantity, quality and isolation of patches for butterfly diversity in fragmented urban forest. Ecol Res 27:265–271

    Article  Google Scholar 

  • Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16. http://www.consecol.org/vol4/iss1/art16/

    Google Scholar 

  • Tworek S (2002) Different bird strategies and their responses to habitat changes in an agricultural landscape. Ecol Res 17:339–359

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S-PLUS, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vergara PM (2006) Estructura espacial de la población de rayaditos (Aphrastura spinicauda) del bosque fragmentado de Fray Jorge. PhD Thesis, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile

  • Vergara PM (2007) Effects of nest box size on the nesting and renesting pattern of Aphrastura spinicauda and Troglodytes aedon. Ecol Austral 17:133–141

    Google Scholar 

  • Vergara PM, Armesto JJ (2009) Responses of Chilean forest birds to anthropogenic habitat fragmentation across spatial scales. Landsc Ecol 24:25–38

    Article  Google Scholar 

  • Vergara PM, Marquet PA (2007) On the seasonal effect of landscape structure on a bird species: the thorn-tailed rayadito in a relict forest in northern Chile. Landsc Ecol 22:1059–1071

    Article  Google Scholar 

  • Vergara PM, Hahn IJ, Zeballos H, Armesto JJ (2010) The importance of forest patch networks for the conservation of the Thorn-tailed Rayaditos in central Chile. Ecol Res 25:683–690

    Article  Google Scholar 

  • Virgós E (2002) Are habitat generalists affected by forest fragmentation? A test with Eurasian badgers (Melesmeles) in coarse-grained fragmented landscapes of central Spain. J Zool 258:313–318

    Article  Google Scholar 

  • Vuilleumier F (1967) Mixed species flocks in Patagonian forests, with remarks on interspecies flock formation. Condor 69:400–404

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by FONDECYT project 11080085. We thank Juan Atan and Mauricio Fuentes for their valuable help in data analyses, and Jennifer Schulz (REFORLAN) for providing necessary information for land use classification. We are grateful to Lillian Harris for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Vergara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 22 kb)

Supplementary material 2 (DOC 32 kb)

About this article

Cite this article

Vergara, P.M., Pérez-Hernández, C.G., Hahn, I.J. et al. Deforestation in central Chile causes a rapid decline in landscape connectivity for a forest specialist bird species. Ecol Res 28, 481–492 (2013). https://doi.org/10.1007/s11284-013-1037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1037-x

Keywords

Navigation