Skip to main content
Log in

Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy

  • Original Article
  • Published:
Ecological Research

Abstract

We investigated the effects of seasonal changes in soil moisture on the morphological and growth traits of fine roots (<2 mm in diameter) in a mature Turkey-oak stand (Quercus cerris L.) in the Southern Apennines of Italy. Root samples (diameter: <0.5, 0.5–1.0, 1.0–1.5, and 1.5–2.0 mm) were collected with the Auger method. Mean annual fine-root mass and length on site was 443 g m−2 (oak fine roots 321 g m−2; other species 122 g m−2) and 3.18 km m−2 (oak fine roots 1.14 km m−2; other species 2.04 km m−2), respectively. Mean specific root length was 8.3 m g−1. All fine-root traits displayed a complex pattern that was significantly related to season. In the four diameter classes, both fine-root biomass and length peaked in summer when soil water content was the lowest and air temperature the highest of the season. Moreover, both fine-root biomass and length were inversely related with soil moisture (p < 0.001). The finest roots (<0.5 mm in diameter) constituted an important fraction of total fine-root length (79 %), but only 21 % of biomass. Only in this root class, consequent to change in mean diameter, specific root length peaked when soil water content was lowest showing an inverse relationship (p < 0.001). Furthermore, fine-root production and turnover decreased with increasing root diameter. These results suggest that changes in root length per unit mass, and pulses in root growth to exploit transient periods of low soil water content may enable trees to increase nutrient and water uptake under seasonal drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bagnouls F, Gaussen H (1953) Saison sèche et indice xérothermique. Bull Soc His nat Toulouse, t 88, pp 193–239; 1 carte en couleur

  • Bakker MR (1998) Fine roots of pedunculate oak (Quercus robur L.) in the Netherlands seven years after liming. Netherlands. J Agric Sci 46:209–222

    Google Scholar 

  • Barij N, Stokes A, Bogaard T, Van Beek R (2007) Does growing on a slope affect tree xylem structure and water relations? Tree Physiol 27:757–764

    Article  PubMed  Google Scholar 

  • Benjamin JG, Nielsen DC (2004) A method to separate plant roots from soil and analyze root surface area. Plant Soil 267:225–234

    Article  CAS  Google Scholar 

  • Bjork RG, Majdi M, Klemedtsson L, Jonsson LL, Molau U (2007) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol 176:862–873

    Article  PubMed  Google Scholar 

  • Bolte A, Löf M (2010) Root spatial distribution and biomass partitioning in Quercus robur L. seedlings: the effects of mounding site preparation in oak plantations. Eur J For Res 129:603–612

    Article  Google Scholar 

  • Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1679–1686

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y (2010) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28:179–197

    Article  Google Scholar 

  • Cerasoli S, Maillard P, Scartazza A, Brugnoli E, Chaves MM, Pereira JS (2004) Carbon and nitrogen winter storage and remobilisation during seasonal flush growth in two-year-old cork oak (Quercus suber L.) saplings. Ann F Sci 61:721–729

    Article  CAS  Google Scholar 

  • Chiatante D, Di Iorio A, Scippa GS (2005) Root responses of Quercus ilex L. seedlings to drought and fire. Plant Biosyst 139:198–208

    Article  Google Scholar 

  • Chiatante D, Di Iorio A, Sciandra S, Scippa GS, Mazzoleni S (2006) Effect of drought and fire on root development in Quercus pubescens Willd. and Fraxinus ornus L. seedlings. Environ Exp Bot 56:190–197

    Article  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Article  Google Scholar 

  • Coners H, Leuschner C (2005) In situ measurements of fine root water absorption in three temperate tree species—temporal variability and control by soil and atmospheric factors. Basic Appl Ecol 6:395–405

    Article  Google Scholar 

  • Cudlin P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Børja I, Konopka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141:406–425

    Article  Google Scholar 

  • Curt TH, Prevosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255:265–279

    Article  CAS  Google Scholar 

  • Di Iorio A, Lasserre B, Petrozzi L, Scippa GS, Chiatante D (2008) Adaptive longitudinal growth of first-order lateral roots of a woody species (Spartium junceum) to slope and different soil conditions—upward growth of surface roots. Environ Exp Bot 63:207–215

    Article  Google Scholar 

  • Di Iorio A, Montagnoli A, Scippa GS, Chiatante D (2011) Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance. Environ Exp Bot 74:272–279

    Article  Google Scholar 

  • Dickson RE, Tomlinson PT (1996) Oak growth, development and carbon metabolism in response to water stress. Ann Sci For 53:181–196

    Article  Google Scholar 

  • Edwards NT, Harris WF (1977) Carbon cycling in a mixed deciduous forest floor. Ecology 58:431–437

    Article  CAS  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–62

    Article  Google Scholar 

  • Finer L, Helmisaari HS, Lohmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konopka B, Kraigher H, Mottonen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277

    Google Scholar 

  • Finér L, Ohashib M, Noguchic K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262:2008–2023

    Google Scholar 

  • Fitter AH (1976) Effects of nutrient supply and competition from other species on root growth of Lolium perenne in soil. Plant Soil 45:177–189

    Article  CAS  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 87–106

    Google Scholar 

  • Fitter AH (1991) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 3–25

    Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Guo D, Mitchell RJ, Withington JM, Fan P–P, Hendricks JJ (2008) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507–2520

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147:117–129

    Article  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14 C-labeled hardwood forest. New Phytol 172:523–535

    Article  PubMed  CAS  Google Scholar 

  • López B, Sabaté S, Gracia CA (1998) Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18:601–606

    Article  PubMed  Google Scholar 

  • López B, Sabaté S, Gracia CA (2001) Fine-root longevity of Quercus ilex. New Phytol 151:437–441

    Article  Google Scholar 

  • Mainero R, Kazda M, Häberle KH, Nikolova PS, Matyssek R (2009) Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations. Environ Poll 157:2638–2644

    Article  Google Scholar 

  • Mainiero R, Kazda M (2006) Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. For Ecol Manag 237:135–142

    Article  Google Scholar 

  • Majdi K, Pregitzer KS, Moren AS, Nylund JE, Agren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8

    Article  CAS  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finer L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44:387–393

    Article  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095

    Article  Google Scholar 

  • Metcalfe DB, Meir P, Aragão LE, da Costa ACL, Braga AP, Gonçalves PHL, de Athaydes Silva Junior J, de Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Article  Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Ostonen I, Puttsepp U, Biel C, Alberton O, Bakker MR, Lohmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Ostonen I, Helmisaari H-S, Borken W, Tedersoo L, Kukumagi M, Bahram M, Lindroos A-J, Nöjd P, Uri V, Merila P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Change Biol 17:3620–3632

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna

    Google Scholar 

  • Ponder F Jr, Alley DE (1997) Soil sampler for rocky soils. Res. Note NC-371. USDA Forest Service North Central Forest Experiment Station, St. Paul, MN, p 5

  • Roderstein M, Hertel D, Leuschner C (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21:483–492

    Article  Google Scholar 

  • Sudmeyer RA, Speijers J, Nicholas BD (2004) Root distribution of Pinus pinaster, P. radiata, Eucalyptus globulus and E. kochii and associated soil chemistry in agricultural land adjacent to tree lines. Tree Physiol 24:1333–1346

    Article  PubMed  CAS  Google Scholar 

  • Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52:363–369

    Article  Google Scholar 

  • Thomas FM, Gausling T (2000) Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. Ann For Sci 57:325–333

    Article  Google Scholar 

  • Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 302:1344–1345

    Article  PubMed  CAS  Google Scholar 

  • USDA (1998) Keys to soil taxonomy, 8th edn. USDA, Natural Resources Conservation Service (NRCS), Washington

    Google Scholar 

  • Van Beek R, Cammeraat LH, Dorren LKA (2001) Eco-engineering and conservation of slopes for long-term protection from erosion, landslides and storms field report

  • Vanguelova EI, Nortcliff S, Moffat AJ, Kennedy F (2005) Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270:233–247

    Article  CAS  Google Scholar 

  • Vogt KA, Persson H (1991) Root methods. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 477–502

    Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

Download references

Acknowledgments

We give special thanks to Dr. Dalila Trupiano and Dr. Bruno Lassere (Università del Molise) for their help in laboratory and field activities. This work was developed as part of the research project “Trees and Italian forests, sinks of carbon and biodiversity, for the reduction of atmospheric CO2 and improvement of environmental quality” funded by Italian Ministry of Environment. The authors also acknowledge SBI (Italian Botanic Society Onlus) for supporting this research. We are grateful to Jean Ann Gilder (Scientific Communication srl) for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Montagnoli.

About this article

Cite this article

Montagnoli, A., Terzaghi, M., Di Iorio, A. et al. Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy. Ecol Res 27, 1015–1025 (2012). https://doi.org/10.1007/s11284-012-0981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-012-0981-1

Keywords

Navigation