Skip to main content
Log in

Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China

  • Original Article
  • Published:
Ecological Research

Abstract

The responses of aboveground parts of the forest to changes in environmental factors and stand age is well studied, but the same is not true for the belowground parts of the forest. Two plantation black locust (Robinia pseudoacacia L.) forest sites were taken in the Loess Plateau of China, one in the drier, infertile, more sandy area of the middle Loess Plateau, and another in the wetter, fertile, more clay-filled area of the southern Loess Plateau. At each site, both a younger (8-year-old) plantation stand and an older (30-year-old) plantation stand were included to study the effects of soil physicochemical properties and stand age on the fine root (<2 mm) biomass and vertical distribution of black locust forests. Root samples were taken with soil cores to a depth of 100 cm. The fine root biomass decreased from the middle site to the southern site for both stand ages, as expected, and the decrease could be due to a higher fine root N concentration associated with a higher fine root turnover rate at the southern site. There was a similar rooting pattern, though not deeper, in the drier, sandy site as predicted based on soil water infiltration and evaporation demands. The different effects of stand characters (e.g., tree density, tree height) on the fine root distribution as compared with the environmental properties may contribute partly to the similar pattern found in the two sites. The fine root biomass increased with stand age in both sites. In contrast to the evident difference in fine root biomass, there was no clear trend in the fine root vertical distribution pattern with stand age. Our results indicate that fine roots are likely to respond to changes in soil physicochemical properties and stand age by changing fine root biomass rather than by varying rooting pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achat D, Bakker M, Trichet P (2008) Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. J For Res 13:165–175. doi:10.1007/s10310-008-0071-y

    Google Scholar 

  • Aikio S, Rämö K, Manninen S (2009) Dynamics of biomass partitioning in two competing meadow plant species. Plant Ecol 205:129–137. doi:10.1007/s11258-009-9603-6

    Article  Google Scholar 

  • Børja I, De Wit HA, Steffenrem A, Majdi H (2008) Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiol 28:773–784. doi:10.1093/treephys/28.5.773

    Article  PubMed  Google Scholar 

  • Bouillet J-P, Laclau J-P, Arnaud M, M’Bou AT, Saint-André L, Jourdan C (2002) Changes with age in the spatial distribution of roots of Eucalyptus clone in Congo: impact on water and nutrient uptake. For Ecol Manag 171:43–57. doi:10.1016/s0378-1127(02)00460-7

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399. doi:10.1007/s004420000455

    Article  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625. doi:10.1139/x05-079

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42. doi:10.1046/j.1469-8137.2000.00686.x

    Article  CAS  Google Scholar 

  • Espeleta JF, Clark DA (2007) Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecol Monogr 77:377–404. doi:10.1890/06-1257.1

    Article  Google Scholar 

  • Espeleta JF, West JB, Donovan LA (2009) Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient. Ecology 90:1773–1787. doi:10.1890/08-0056.1

    Article  PubMed  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147:43–53. doi:10.1046/j.1469-8137.2000.00688.x

    Article  CAS  Google Scholar 

  • Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi:10.1080/11263500701625897

    Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277. doi:10.1016/j.foreco.2010.10.016

    Article  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834. doi:10.1139/x87-131

    Article  Google Scholar 

  • Gower ST (1987) Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19:171–175

    Article  Google Scholar 

  • Guo LB, Wang M, Gifford RM (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299:251–262

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504. doi:10.1093/treephys/27.10.1493

    Article  PubMed  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi:10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi:10.1007/bf00333714

    Article  Google Scholar 

  • Jackson RB, Mooney H, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362

    Article  PubMed  CAS  Google Scholar 

  • Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000) Belowground consequences of vegetation change and their treatment in models. Ecol Appl 10:470–483. doi:10.1890/1051-0761(2000)010[0470:bcovca]2.0.co;2

    Article  Google Scholar 

  • Jin T, Liu G, Fu B, Ding X, Yang L (2011) Assessing adaptability of planted trees using leaf traits: a case study with Robinia pseudoacacia L. in the Loess Plateau, China. Chin Geogra Sci 21: 290–303. doi:10.1007/s11769-011-0470-4

  • Jobbágy E, Jackson R (2001) The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53:51–77. doi:10.1023/a:1010760720215

    Article  Google Scholar 

  • King J, Pregitzer K, Zak D, Holmes W, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO and varying soil resource availability. Oecologia 146: 318–328. doi:10.1007/s00442-005-0191-4

    Google Scholar 

  • Kobe RK, Iyer M, Walters MB (2010) Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91: 166–179. doi:10.1890/09-0027.1

    Google Scholar 

  • Kuzyakov Y, Schneckenberger K (2004) Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch Agron Soil Sci 50:115–132

    Article  Google Scholar 

  • Leuschner C, Hertel D (2003) Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany. Springer, Berlin, pp 405–438

  • Leuschner C, Hertel D, Coners H, Büttner V (2001) Root competition between beech and oak: a hypothesis. Oecologia 126:276–284. doi:10.1007/s004420000507

    Article  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56. doi:10.1023/b:plso.0000016508.20173.80

    Article  CAS  Google Scholar 

  • Litton CM, Ryan MG, Tinker DB, Knight DH (2003) Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Can J For Res 33:351–363. doi:10.1139/x02-181

    Article  Google Scholar 

  • Litton CM, Ryan MG, Knight DH (2004) Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14:460–475. doi:10.1890/02-5291

    Article  Google Scholar 

  • Lu R (1999) Analytical methods of soil agrochemistry. Science and Technology, Beijing

    Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387. doi:10.1126/science.1089543

    Article  PubMed  CAS  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095. doi:10.1111/j.1365-2486.2008.01634.x

    Article  Google Scholar 

  • Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139. doi:10.1046/j.1469-8137.2000.00677.x

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390. doi:10.2307/1939190

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–9693. doi:10.1073/pnas.0403491101

    Article  PubMed  CAS  Google Scholar 

  • Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253:68–80. doi:10.1016/j.foreco.2007.07.003

    Article  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077. doi:10.1111/j.1365-2486.2004.00866.x

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670. doi:10.1093/treephys/18.10.665

    Article  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309. doi:10.1890/0012-9615(2002)072[0293:fraonn]2.0.co;2

    Article  Google Scholar 

  • Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454. doi:10.1126/science.1179998

    Article  PubMed  CAS  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662. doi:10.1890/02-4032

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414. doi:10.1890/03-4037

    Article  Google Scholar 

  • Schenk HJ (2005) Vertical vegetation structure below ground: scaling from root to globe. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Berlin, pp 341–373

  • Schenk HJ, Jackson RB (2002a) The global biogeography of roots. Ecol Monogr 72:311–328. doi:10.1890/0012-9615(2002)072[0311:tgbor]2.0.co;2

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002b) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi:10.1046/j.1365-2745.2002.00682.x

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140. doi:10.1016/j.geoderma.2004.11.018

    Article  Google Scholar 

  • Schimel DS (2010) Drylands in the earth system. Science 327:418–419. doi:10.1126/science.1184946

    Article  PubMed  CAS  Google Scholar 

  • Stevens GN, Jones RH (2006) Patterns in soil fertility and root herbivory interact to influence fine-root dynamics. Ecology 87:616–624. doi:10.1890/05-0809

    Article  PubMed  Google Scholar 

  • Valverde-Barrantes O, Raich J, Russell A (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370. doi:10.1007/s11104-006-9168-2

    Article  CAS  Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830. doi:10.1093/treephys/19.12.823

    Article  PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219. doi:10.1007/bf00017088

    Article  Google Scholar 

  • Wang J, Ji Z, Bai L, Xiao Y, Su Y (2007) The relation between soil organic carbon and root biomass in plantation. J Northwest For Univ 22:54–56

    Google Scholar 

  • Wen QZ (ed) (1989) Geochemistry in Chinese Loess. Science, Beijing

    Google Scholar 

  • Yanai RD, Park BB, Hamburg SP (2006) The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Can J For Res 36:450–459. doi:10.1139/x05-254

    Article  Google Scholar 

  • Yang Y, Luo Y (2011) Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development. J Ecol 99:431–437. doi:10.1111/j.1365-2745.2010.01774.x

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient Contents in Boreal Forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221. doi:10(1080/07352689),2010,483579

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou Z, Ma X, Jin G (2010) Foraging ability and growth performance of four subtropical tree species in response to heterogeneous nutrient environments. J For Res 15:91–98. doi:10.1007/s10310-009-0153-5

    Article  Google Scholar 

  • Zhou Z, Shangguan Z (2007) Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant Soil 291:119–129. doi:10.1007/s11104-006-9179-z

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Burton AJ, Pregitzer KS (1996) Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol 16:719–725. doi:10.1093/treephys/16.8.719

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 40971065), State Forestry Administration (No. 201004058), and CAS/SAFEA International Partnership Program for Creative Research Teams of “Ecosystem Processes and Services.” We would like to thank all of the anonymous reviewers and editors for their comments and suggestions in the process of revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojie Fu.

About this article

Cite this article

Chang, R., Fu, B., Liu, G. et al. Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China. Ecol Res 27, 827–836 (2012). https://doi.org/10.1007/s11284-012-0958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-012-0958-0

Keywords

Navigation