Skip to main content
Log in

Drought-induced mortality affects understory vegetation: release after death

Ecological Research

Abstract

In recent decades, severe droughts have become an important cause of canopy disturbance in forests, and have shown potential to cause rapid and pronounced vegetation shifts. Under dead canopy, undamaged understory could influence the nature of resource limitation for seedling growth and survival, limiting forest regeneration. We assessed the release response of understory vegetation after a severe drought event in temperate forests of northern Patagonia. Growth trends of dominant tree saplings, and changes in vegetation biodiversity and cover were compared between drought-dead and unaffected canopy. Nothofagus dombeyi undergo growth release after the climatic event in affected forests, and the response was evidenced immediately after the disturbance. For Austrocedrus chilensis, the growth release response was less evident, due mainly to a difference in age structure. In the understory the release response was barely discernable for some components. There was a tendency towards higher cover of the shrub layer in the understory of drought-affected forests, and an important presence of the exotic shrub Rosa rubiginosa. However, the clearest biotic response following drought mortality was the release in growth of understory dominant tree component. Those results strongly suggest that the environment under drought-dead canopy, and the die-off in woody sapling cohorts in a self-thinning process, could favor crown expansion and growth release of understory species that could help predict future forest trajectories in the context of the influence of climatic extreme events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95:14829–14842

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham RJ, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb NS (2009) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 4:660–684

    Google Scholar 

  • Archaux F, Wolters V (2006) Impact of summer drought on forest biodiversity: what do we know? Ann For Sci 63:645–652

    Article  Google Scholar 

  • Beckage B, Clark JS (2003) Seedling survival and growth of three forest tree species: the role of spatial heterogeneity. Ecology 84:1849–1861

    Article  Google Scholar 

  • Beckage B, Clark JS, Clinton BD, Haines BL (2000) A long-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Can J For Res 30:1617–1631

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  • Bran D, Pérez A, Ghermandi L, Barrios Lammuniére S (2001) Evaluación de poblaciones de coihue (Nothofagus dombeyi) del Parque Nacional Nahuel Huapi, afectadas por la sequía 98/99, a escala de paisaje (1:250.000) I Reunión Binacional de Ecología. Abstract volume, p 63

  • Breshears DD, Cobb NS, Rich PM, Pric KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E, Plymouth Marine Laboratory, UK

  • Clinton BD (2003) Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. For Ecol Manag 186:243–255

    Article  Google Scholar 

  • Clinton BD, Boring LR (1994) Regeneration patterns in canopy gaps of mixed-oak forests of the southern Appalachians: influences of topographic position and evergreen understory. Am Midl Nat 132:308–319

    Article  Google Scholar 

  • Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweta Basin. Ecology 74:1551–1558

    Article  Google Scholar 

  • Coll L, Balandier P, Picon-Cochard C, Prévosto B, Curt T (2003) Competition for water between seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600

    Article  Google Scholar 

  • Cook ER, Krusic PJ (2006) ARSTAN_41: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New York

  • Cook ER, Shiyatov S, Mazepa V (1990) Estimation of the mean chronology. In: Cook E, Kairiukstis LA (eds) Method of dendrochronology—applications in the environmental science. Kluwer, Dordrecht, pp 123–132

    Google Scholar 

  • Damascos M, Gallopin G (1992) Ecología de un arbusto introducido (Rosa rubiginosa L. = Rosa eglanteria L.): riesgos de invasión y efecto en las comunidades vegetales de la región andino-patagónica de Argentina. Rev Chil Hist Nat 65:395–407

    Google Scholar 

  • Damascos M, Rapoport EH (2002) Diferencias en la flora herbácea y arbustiva entre claros y áreas bajo dosel en un bosque de Nothofagus pumilio en Argentina. Rev Chil Hist Nat 75:465–472

    Article  Google Scholar 

  • Davis MA, Wrage KJ, Reich PB, Tjoelker MG, Schaeffer T, Muermann C (1999) Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol 145:341–350

    Article  Google Scholar 

  • De Fina AL (1972) El clima de la región de los bosques Andino-Patagónicos. In: Dimitri MJ (ed) La región de los bosques Andino-Patagónicos, Sinopsis General. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 35–58

    Google Scholar 

  • Dezzotti A (1996) Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in northwestern Patagonia. Argentina 89:125–137

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Elliot KJ, Swank WT (1994) Impacts of drought on tree mortality and growth in a mixed hardwood forest. J Veg Sci 5:229–236

    Article  Google Scholar 

  • Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi. Catálogo de la flora vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue & Red Latinoamericana de Botánica, S.C. de Bariloche, Argentina

  • Fensham RJ, Holman JE (1999) Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J Appl Ecol 36:1035–1050

    Article  Google Scholar 

  • Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78:2458–2473

    Article  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern edge of Fagus sylvatica. Glob Change Biol 12:2163–2174

    Article  Google Scholar 

  • Kane JM, Meinhardt KA, Chang T, Cardall BL, Michalet R, Whitham TG (2011) Drought-induced mortality of a foundation species (Juniperus monosperma) promotes positive afterlife effects in understory vegetation. Plant Ecol 212:733–741

    Article  Google Scholar 

  • Lloret F, Siscart D (1995) Los efectos demográficos de la sequía en poblaciones de encina. Cuadernos SECF 2:77–81

    Google Scholar 

  • Lusk CH, del Pozo A (2002) Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecol 27:173–182

    Article  Google Scholar 

  • Matteuchi SD, Colma A (1982) Metodología para el estudio de la vegetación. The General Secretariat of the Organization of American States, Washington, DC

    Google Scholar 

  • McAlpine KG, Jesson LK (2007) Biomass allocation, shade tolerance and seedling survival of the invasive species Berberis darwinii (Darwin’s barberry). N Z J Ecol 31:1–12

    Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Talbot Trotter R III, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093

    Article  Google Scholar 

  • Nowacki GJ, Abrams MD (1997) Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol Monogr 67:225–249

    Google Scholar 

  • R (2008) R—a language and environment for statistical computing. The R Foundation for Statistical Computing, Mendoza, Argentina. http://www.R-project.org

  • Raffaele E, Veblen TT, Blackhall M, Tercero-Bucardo N (2011) Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia. Argentina 22:59–71

    Google Scholar 

  • Rentch JS, Fajvan MA, Hicks RR Jr (2003) Oak establishment and canopy accession strategies in five old-growth stands in the central hardwood forest region. For Ecol Manag 184:285–297

    Article  Google Scholar 

  • Royer PD, Breshears DD, Zou CB, Cobb NS, Kurca SA (2010) Ecohydrological energy inputs in semiarid coniferous gradients: responses to management- and drought-induced tree reductions. For Ecol Manag 260:1646–1655

    Article  Google Scholar 

  • Royer PD, Cobb NS, Clifford MJ, Huang C-Y, Breshears DD, Adams HD, Villegas JC (2011) Extreme climatic event-triggered overstory vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J Ecol 99:714–723

    Article  Google Scholar 

  • Saldaña AO, Hernández C, Coopman RE, Bravo LA, Corcuera LJ (2010) Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecol Res 25:273–281

    Article  Google Scholar 

  • Sasal Y (2009) Efecto del ganado en áreas incendiadas sobre la comunidad de artrópodos terrestres y las interacciones planta-insecto en el NO de la Patagonia, Argentina. Universidad Nacional del Comahue, S. C. de Bariloche, Río Negro, Argentina

  • Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, Tucson

    Google Scholar 

  • Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Suarez ML (2009) Efecto de las fluctuaciones climáticas sobre la dinámica de bosques de Nothofagus dombeyi a lo largo de un gradiente ambiental, en el norte de la Patagonia, Argentina Departamento de Ecología. Universidad Nacional del Comahue, San Carlos de Bariloche, p 242

    Google Scholar 

  • Suarez ML, Kitzberger T (2008) Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J For Res 38:3002–3010

    Article  Google Scholar 

  • Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034

    Article  Google Scholar 

  • Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92:954–966

    Article  Google Scholar 

  • Veblen TT (1989) Tree regeneration responses to gaps along a transandean gradient. Ecology 70:541–543

    Article  Google Scholar 

  • Veblen TT, Lorenz DC (1987) Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Vegetatio 71:113–126

    Google Scholar 

  • Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J Veg Sci 3:507–520

    Article  Google Scholar 

  • Williamson GB, Laurance WF, Oliveira AA, Delamônica P, Gascon C, Lovejoy TE, Pohl L (2000) Amazonian tree mortality during the 1997 El Niño drought. Conserv Biol 14:1538–1542

    Article  Google Scholar 

  • Wright EF, Canham CD, Coates KD (2000) Effects of suppression and release on sapling growth for 11 tree species of northern, interior British Columbia. Can J For Res 30:1571–1580

    Article  Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Idea Wild (Fort Collins, CO) for providing fundamental equipment for this study; the personnel from the Nahuel Huapi National Park for logistic support; and M. Bastidas and C. Ziperovich for their volunteer field assistance. This research was developed with the support from CONICET doctoral fellowships received by both authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Suarez.

About this article

Cite this article

Suarez, M.L., Sasal, Y. Drought-induced mortality affects understory vegetation: release after death. Ecol Res 27, 715–724 (2012). https://doi.org/10.1007/s11284-012-0945-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-012-0945-5

Keywords

Navigation