Advertisement

Ecological Research

, Volume 27, Issue 4, pp 715–724 | Cite as

Drought-induced mortality affects understory vegetation: release after death

  • M. L. SuarezEmail author
  • Y. Sasal
Original Article

Abstract

In recent decades, severe droughts have become an important cause of canopy disturbance in forests, and have shown potential to cause rapid and pronounced vegetation shifts. Under dead canopy, undamaged understory could influence the nature of resource limitation for seedling growth and survival, limiting forest regeneration. We assessed the release response of understory vegetation after a severe drought event in temperate forests of northern Patagonia. Growth trends of dominant tree saplings, and changes in vegetation biodiversity and cover were compared between drought-dead and unaffected canopy. Nothofagus dombeyi undergo growth release after the climatic event in affected forests, and the response was evidenced immediately after the disturbance. For Austrocedrus chilensis, the growth release response was less evident, due mainly to a difference in age structure. In the understory the release response was barely discernable for some components. There was a tendency towards higher cover of the shrub layer in the understory of drought-affected forests, and an important presence of the exotic shrub Rosa rubiginosa. However, the clearest biotic response following drought mortality was the release in growth of understory dominant tree component. Those results strongly suggest that the environment under drought-dead canopy, and the die-off in woody sapling cohorts in a self-thinning process, could favor crown expansion and growth release of understory species that could help predict future forest trajectories in the context of the influence of climatic extreme events.

Keywords

Drought-dead canopy Temperate forest Sapling growth release Understory vegetation cover Understory vegetation diversity 

Notes

Acknowledgments

We are grateful to Idea Wild (Fort Collins, CO) for providing fundamental equipment for this study; the personnel from the Nahuel Huapi National Park for logistic support; and M. Bastidas and C. Ziperovich for their volunteer field assistance. This research was developed with the support from CONICET doctoral fellowships received by both authors.

References

  1. Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95:14829–14842Google Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham RJ, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb NS (2009) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 4:660–684Google Scholar
  3. Archaux F, Wolters V (2006) Impact of summer drought on forest biodiversity: what do we know? Ann For Sci 63:645–652CrossRefGoogle Scholar
  4. Beckage B, Clark JS (2003) Seedling survival and growth of three forest tree species: the role of spatial heterogeneity. Ecology 84:1849–1861CrossRefGoogle Scholar
  5. Beckage B, Clark JS, Clinton BD, Haines BL (2000) A long-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Can J For Res 30:1617–1631CrossRefGoogle Scholar
  6. Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51PubMedCrossRefGoogle Scholar
  7. Bran D, Pérez A, Ghermandi L, Barrios Lammuniére S (2001) Evaluación de poblaciones de coihue (Nothofagus dombeyi) del Parque Nacional Nahuel Huapi, afectadas por la sequía 98/99, a escala de paisaje (1:250.000) I Reunión Binacional de Ecología. Abstract volume, p 63Google Scholar
  8. Breshears DD, Cobb NS, Rich PM, Pric KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148PubMedCrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E, Plymouth Marine Laboratory, UKGoogle Scholar
  10. Clinton BD (2003) Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. For Ecol Manag 186:243–255CrossRefGoogle Scholar
  11. Clinton BD, Boring LR (1994) Regeneration patterns in canopy gaps of mixed-oak forests of the southern Appalachians: influences of topographic position and evergreen understory. Am Midl Nat 132:308–319CrossRefGoogle Scholar
  12. Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweta Basin. Ecology 74:1551–1558CrossRefGoogle Scholar
  13. Coll L, Balandier P, Picon-Cochard C, Prévosto B, Curt T (2003) Competition for water between seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600CrossRefGoogle Scholar
  14. Cook ER, Krusic PJ (2006) ARSTAN_41: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New YorkGoogle Scholar
  15. Cook ER, Shiyatov S, Mazepa V (1990) Estimation of the mean chronology. In: Cook E, Kairiukstis LA (eds) Method of dendrochronology—applications in the environmental science. Kluwer, Dordrecht, pp 123–132Google Scholar
  16. Damascos M, Gallopin G (1992) Ecología de un arbusto introducido (Rosa rubiginosa L. = Rosa eglanteria L.): riesgos de invasión y efecto en las comunidades vegetales de la región andino-patagónica de Argentina. Rev Chil Hist Nat 65:395–407Google Scholar
  17. Damascos M, Rapoport EH (2002) Diferencias en la flora herbácea y arbustiva entre claros y áreas bajo dosel en un bosque de Nothofagus pumilio en Argentina. Rev Chil Hist Nat 75:465–472CrossRefGoogle Scholar
  18. Davis MA, Wrage KJ, Reich PB, Tjoelker MG, Schaeffer T, Muermann C (1999) Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol 145:341–350CrossRefGoogle Scholar
  19. De Fina AL (1972) El clima de la región de los bosques Andino-Patagónicos. In: Dimitri MJ (ed) La región de los bosques Andino-Patagónicos, Sinopsis General. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 35–58Google Scholar
  20. Dezzotti A (1996) Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in northwestern Patagonia. Argentina 89:125–137Google Scholar
  21. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  22. Elliot KJ, Swank WT (1994) Impacts of drought on tree mortality and growth in a mixed hardwood forest. J Veg Sci 5:229–236CrossRefGoogle Scholar
  23. Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi. Catálogo de la flora vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue & Red Latinoamericana de Botánica, S.C. de Bariloche, ArgentinaGoogle Scholar
  24. Fensham RJ, Holman JE (1999) Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J Appl Ecol 36:1035–1050CrossRefGoogle Scholar
  25. Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78:2458–2473CrossRefGoogle Scholar
  26. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern edge of Fagus sylvatica. Glob Change Biol 12:2163–2174CrossRefGoogle Scholar
  27. Kane JM, Meinhardt KA, Chang T, Cardall BL, Michalet R, Whitham TG (2011) Drought-induced mortality of a foundation species (Juniperus monosperma) promotes positive afterlife effects in understory vegetation. Plant Ecol 212:733–741CrossRefGoogle Scholar
  28. Lloret F, Siscart D (1995) Los efectos demográficos de la sequía en poblaciones de encina. Cuadernos SECF 2:77–81Google Scholar
  29. Lusk CH, del Pozo A (2002) Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecol 27:173–182CrossRefGoogle Scholar
  30. Matteuchi SD, Colma A (1982) Metodología para el estudio de la vegetación. The General Secretariat of the Organization of American States, Washington, DCGoogle Scholar
  31. McAlpine KG, Jesson LK (2007) Biomass allocation, shade tolerance and seedling survival of the invasive species Berberis darwinii (Darwin’s barberry). N Z J Ecol 31:1–12Google Scholar
  32. Mueller RC, Scudder CM, Porter ME, Talbot Trotter R III, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093CrossRefGoogle Scholar
  33. Nowacki GJ, Abrams MD (1997) Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol Monogr 67:225–249Google Scholar
  34. R (2008) R—a language and environment for statistical computing. The R Foundation for Statistical Computing, Mendoza, Argentina. http://www.R-project.org
  35. Raffaele E, Veblen TT, Blackhall M, Tercero-Bucardo N (2011) Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia. Argentina 22:59–71Google Scholar
  36. Rentch JS, Fajvan MA, Hicks RR Jr (2003) Oak establishment and canopy accession strategies in five old-growth stands in the central hardwood forest region. For Ecol Manag 184:285–297CrossRefGoogle Scholar
  37. Royer PD, Breshears DD, Zou CB, Cobb NS, Kurca SA (2010) Ecohydrological energy inputs in semiarid coniferous gradients: responses to management- and drought-induced tree reductions. For Ecol Manag 260:1646–1655CrossRefGoogle Scholar
  38. Royer PD, Cobb NS, Clifford MJ, Huang C-Y, Breshears DD, Adams HD, Villegas JC (2011) Extreme climatic event-triggered overstory vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J Ecol 99:714–723CrossRefGoogle Scholar
  39. Saldaña AO, Hernández C, Coopman RE, Bravo LA, Corcuera LJ (2010) Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecol Res 25:273–281CrossRefGoogle Scholar
  40. Sasal Y (2009) Efecto del ganado en áreas incendiadas sobre la comunidad de artrópodos terrestres y las interacciones planta-insecto en el NO de la Patagonia, Argentina. Universidad Nacional del Comahue, S. C. de Bariloche, Río Negro, ArgentinaGoogle Scholar
  41. Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, TucsonGoogle Scholar
  42. Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  43. Suarez ML (2009) Efecto de las fluctuaciones climáticas sobre la dinámica de bosques de Nothofagus dombeyi a lo largo de un gradiente ambiental, en el norte de la Patagonia, Argentina Departamento de Ecología. Universidad Nacional del Comahue, San Carlos de Bariloche, p 242Google Scholar
  44. Suarez ML, Kitzberger T (2008) Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J For Res 38:3002–3010CrossRefGoogle Scholar
  45. Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034CrossRefGoogle Scholar
  46. Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92:954–966CrossRefGoogle Scholar
  47. Veblen TT (1989) Tree regeneration responses to gaps along a transandean gradient. Ecology 70:541–543CrossRefGoogle Scholar
  48. Veblen TT, Lorenz DC (1987) Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Vegetatio 71:113–126Google Scholar
  49. Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J Veg Sci 3:507–520CrossRefGoogle Scholar
  50. Williamson GB, Laurance WF, Oliveira AA, Delamônica P, Gascon C, Lovejoy TE, Pohl L (2000) Amazonian tree mortality during the 1997 El Niño drought. Conserv Biol 14:1538–1542CrossRefGoogle Scholar
  51. Wright EF, Canham CD, Coates KD (2000) Effects of suppression and release on sapling growth for 11 tree species of northern, interior British Columbia. Can J For Res 30:1571–1580CrossRefGoogle Scholar
  52. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2012

Authors and Affiliations

  1. 1.Laboratorio Ecotono, INIBIOMA-CONICETUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina

Personalised recommendations