Skip to main content
Log in

Environmental determinants of food-chain length: a meta-analysis

  • Special Feature
  • Trends in isotope ecology
  • Published:
Ecological Research

Abstract

Food-chain length is an important character of ecological communities that affects many of their functional aspects. Recently, an increasing number of studies have tested the effects of productivity, disturbance, or ecosystem size on food-chain length in a variety of natural systems. Here we conduct a formal meta-analysis to summarize findings from these empirical studies. We found significant positive mean effects of productivity and ecosystem size but no significant mean effect of disturbance on food-chain length. The strength of mean effect sizes was not significantly different between productivity and ecosystem size. These results lend general support to previous theories predicting the effect of productivity and ecosystem size, but fail to support the prediction that disturbance shortens food chains. In addition, our meta-analysis found that the effect sizes of primary studies were significantly heterogeneous for ecosystem size and disturbance, but not for productivity. This pattern might reflect that ecosystem size and disturbance can affect food-chain length through multiple different mechanisms, while productivity influences food-chain length in a simple manner through energy limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baiser B, Ardeshiri RS, Ellison AM (2011) Species richness and trophic diversity increase decomposition in a co-evolved food web. PLoS ONE 6:e20672

    Article  CAS  PubMed  Google Scholar 

  • Borenstein M, Hedges SB, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, West Sussex

    Book  Google Scholar 

  • Briand F, Cohen JE (1987) Environmental correlates of food chain length. Science 238:956–960

    Article  CAS  PubMed  Google Scholar 

  • Cohen JE, Newman CM (1991) Community area and food-chain length: theoretical predictions. Am Nat 138:1542–1554

    Article  Google Scholar 

  • Doi H, Chang K-H, Ando T, Ninomiya I, Imai H, Nakano S (2009) Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos 118:138–144

    Article  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Hoeinghaus DJ, Winemiller KO, Agostinho AA (2008) Hydrogeomorphology and river impoundment affect food-chain length of diverse neotropical food webs. Oikos 117:984–995

    Article  Google Scholar 

  • Holt RD (1993) Ecology at the mesoscale: the influence of regional processes on local communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 77–88

    Google Scholar 

  • Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA, Winemiller KO (eds) Food webs. Chapman and Hall, New York

    Google Scholar 

  • Holt RD (1997) From metapopulation dynamics to community structure: Some consequences of spatial heterogeneity. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego

    Google Scholar 

  • Holt RD (2002) Food webs in space: on the interplay of dynamic instability and spatial processes. Ecol Res 17:261–273

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia; or, why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Jenkins B, Kitching RL, Pimm SL (1992) Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65:249–255

    Article  Google Scholar 

  • Kaunzinger CMK, Morin PJ (1998) Productivity controls food-chain properties in microbial communities. Nature 395:495–497

    Article  CAS  Google Scholar 

  • Kitching RL (2000) Food webs and container habitats. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lawler SP, Morin PJ (1993) Food web architecture and population dynamics in laboratory microcosms of protists. Am Nat 141:675–686

    Article  CAS  PubMed  Google Scholar 

  • Lawton JH (1989) Food webs. In: Cherrett JM (ed) Ecological concepts. Blackwell Scientific, Oxford, pp 43–78

    Google Scholar 

  • McHugh PA, McIntosh AR, Jellyman PG (2010) Dual influences of ecosystem size and disturbance on food chain length in streams. Ecol Lett 13:881–890

    Article  PubMed  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemelä P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, London

    Book  Google Scholar 

  • Pimm SL, Lawton JH (1977) The number of trophic levels in ecological communities. Nature 275:542–544

    Article  Google Scholar 

  • Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277

    Article  Google Scholar 

  • Post DM (2007) Testing the productive-space hypothesis: rational and power. Oecologia 153:973–984

    Article  PubMed  Google Scholar 

  • Post DM, Pace ML, Hairston NG (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Power ME, Parker MS, Wootton JT (1996) Disturbance and food chain length in rivers. In: Polis GA, Winemiller KO (eds) Food webs: integration of pattern and dynamics. Chapman and Hall, New York, pp 286–297

    Chapter  Google Scholar 

  • Reid MA, Delong MD, Thoms MC (2011) The influence of hydrological connectivity on food web structure in floodplain lakes. River Res Appl, doi:10.1002/rra.1491

  • Rosenthal R, DiMatteo MR (2001) Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol 52:59–82

    Article  CAS  PubMed  Google Scholar 

  • Sabo JL, Finlay JC, Post DM (2009) Food chains in freshwaters. Ann N Y Acad Sci 1162:187–220

    Article  PubMed  Google Scholar 

  • Sabo JL, Finlay JC, Kennedy T, Post DM (2010) The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330:965–967

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large. Ecology 70:1559–1589

    Article  Google Scholar 

  • Slobodkin LB (1961) Growth and regulation of animal populations. Holt, Rinehart and Wilson, New York

    Google Scholar 

  • Spencer M, Warren PH (1996) The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 75:419–430

    Article  Google Scholar 

  • Takimoto G, Spiller DA, Post DM (2008) Ecosystem size, but not disturbance, determines food-chain length on islands of the Bahamas. Ecology 89:3001–3007

    Article  Google Scholar 

  • Takimoto G, Post DM, Spiller DA, Holt R (2012) Effects of productivity, disturbance, and ecosystem size on food-chain length: insights from a metacommunity model of intraguild predation. Ecol Res. doi:10.1007/s11284-012-0929-5

  • Thompson RM, Townsend CR (2005) Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108:137–148

    Article  Google Scholar 

  • Townsend CR, Thompson RM, McIntosh AR, Kilroy C, Edwards E, Scarsbrook MR (1998) Disturbance, resource supply, and food-web architecture in streams. Ecol Lett 1:200–209

    Article  Google Scholar 

  • Vander Zanden JM, Fetzer WW (2007) Global patterns of aquatic food chain length. Oikos 116:1378–1388

    Article  Google Scholar 

  • Vander Zanden MJ, Shuter BJ, Lester N, Rasmussen JB (1999) Patterns of food chain length in lakes: a stable isotope study. Am Nat 154:406–416

    Article  PubMed  Google Scholar 

  • Vander Zanden MJ, Chandra S, Allen BC, Reuter JE, Goldman CR (2003) Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. Ecosystems 6:274–288

    Article  Google Scholar 

  • Walters AW, Post DM (2008) An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 89:3261–3267

    Article  PubMed  Google Scholar 

  • Williams A, Trexler J (2006) A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern everglades. Hydrobiologia 569:493–504

    Article  CAS  Google Scholar 

  • Wilson HB, Hassell MP, Holt RD (1998) Persistence and area effects in a stochastic tritrophic model. Am Nat 151:587–595

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank useful comments from two reviewers. This research is supported by Japan Society for the Promotion of Science (21770091, 2251029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Takimoto.

About this article

Cite this article

Takimoto, G., Post, D.M. Environmental determinants of food-chain length: a meta-analysis. Ecol Res 28, 675–681 (2013). https://doi.org/10.1007/s11284-012-0943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-012-0943-7

Keywords

Navigation