Skip to main content
Log in

Temperature mediates competitive exclusion and diversity in benthic microalgae under different N:P stoichiometry

  • Original Article
  • Published:
Ecological Research

Abstract

The dependence of competitive interactions on abiotic conditions is attracting increasing interest in the face of globally rising temperatures and altered biogeochemical cycles of major nutrients. In a microcosm experiment involving a natural inoculum of benthic microalgae, temperature and nutrient supply ratios were manipulated in order to test three main hypotheses: (1) temperature and nutrient supply ratios determine species composition and diversity of the assemblage, (2) the identity of the dominating species depends on nutrient supply and temperature, and (3) higher temperature leads to faster competitive exclusion and thus more rapid decline in species richness. Over a period of 7 weeks, algal biomass reached an equilibrium carrying capacity, with was higher at colder temperatures and intermediate N:P supply ratios (N:P = 16). Initial growth rate increased with temperature and under high P-supply. Species richness in the stationary phase of the experiment decreased with increasing temperature, reflecting a higher extinction rate in the warmer treatments, which were also characterized by higher dominance of single species. Thus, increasing temperature both altered the identity of the dominating species and accelerated competitive displacement. This experiment thus indicates that warming might influence outcome and temporal dynamics in species interactions, and thereby eventually local diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Admiraal W, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42:30–40

    Article  Google Scholar 

  • Bertness MD, Ewanchuk PJ (2002) Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132:392–401

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357

    Article  CAS  Google Scholar 

  • Burgmer T, Hillebrand H (2011) Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos doi: 10.1111/j.1600-0706.2010.19301.x

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FL, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553

    Article  PubMed  CAS  Google Scholar 

  • DeNicola DM (1996) Periphyton responses to temperature at different ecological levels. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology—freshwater benthic ecosystems, Academic, London, pp 149–181

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Fong P, Zedler JB (1993) Temperature and light effects on the seasonal succession of algal communities in shallow coastal lagoons. J Exp Mar Biol Ecol 171:259–272

    Article  Google Scholar 

  • Fujimoto N, Sudo R, Sugiura N, Inamori Y (1997) Nutrient limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnol Oceanogr 42:250–256

    Article  CAS  Google Scholar 

  • Hillebrand H, Sommer U (1997) Response of epilithic microphytobenthos of the western baltic sea to in situ experiments with nutrient enrichment. Mar Ecol Prog Ser 160:35–46

    Article  Google Scholar 

  • Hillebrand H, Sommer U (1999) The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnol Oceanogr 44:440–446

    Article  Google Scholar 

  • Hillebrand H, Sommer U (2000) Effect of continuous nutrient enrichment on microalgae colonizing hard substrates. Hydrobiologia 426:185–192

    Article  Google Scholar 

  • Hillebrand H, Duerselen CD, Kirschtel DB, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hillebrand H et al (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand H, Borer ET, Bracken MES, Cardinale BJ, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Harpole WS, Ngai JT et al (2009) Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol Lett 12:516–527

    Article  PubMed  Google Scholar 

  • Hobbie SE, Shevtsova A, Chapin FS (1999) Plant response to species removal and experimental warming in Alaskan tussock tundra. Oikos 84:417–434

    Article  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512

    Article  Google Scholar 

  • Klanderud K, Totland O (2007) The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming. Oikos 116:1279–1288

    Article  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7(8):e1000178. doi:10.1371/journal.pbio.1000178

    Article  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Sommer U (1994a) Are marine diatoms favoured by high si:N ratios? Mar Ecol Prog Ser 115:309–315

    Article  CAS  Google Scholar 

  • Sommer U (1994b) The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol Oceanogr 39:1680–1688

    Article  Google Scholar 

  • Sommer U (1996) Nutrient competition experiments with periphyton from the Baltic Sea. Mar Ecol Prog Ser 140:161–167

    Article  CAS  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol 14:1199–1208

    Article  Google Scholar 

  • Tilman D, Kiesling R, Sterner R, Kilham SS, Johnson FA (1986) Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch Hydrobiol 106:473–485

    Google Scholar 

  • Tirok K, Gaedke U (2007) The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 150:625–642

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Vijverberg J, Vos M (2006) Predator-released compounds, ambient temperature and 5 competitive exclusion among differently sized Daphnia species. Freshw Biol 51:756–767

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a reassessment of data obtained from an experiment in a project funded by the German Science Foundation (DFG So145/15-1). The new analysis is based on ideas developed during the Aquashift priority program funded by the DFG (DFG Hi 848/3-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Hillebrand.

Appendix 1

Appendix 1

Species found in the inocula of the two experiments are listed. Besides the species names and classes (BAC Bacillariphyceae, RHO Rhodophyceae, CYA Cyanobacteria), the percentage contribution to the inocula is given (r rare, <0.1% of inoculums biovolume).

 

Species

Class

%

Achnanthesbrevipes C.A. Ag.

BAC

r

Achnantheslongipes C.A. Ag.

BAC

r

Aglaothamnionbyssoides (Arn.) L’Hardy-Halos & Rueness

RHO

r

Amphoracoffeaeformis (C.A. Ag.) Kützing

BAC

0.2

Asterionellaformosa Hassall

BAC

0.2

Berkeleyarutilans (Trentepohl) Grunow

BAC

0.5

Chaetocerossimplex Ostenfeld

BAC

r

Cocconeisscutellum Ehrenberg

BAC

r

Cylindrothecaclosterium (Ehrenberg) Reiman & Lewin

BAC

r

Cymbellapusilla Kützing

BAC

r

Diatomavulgare Bory

BAC

r

Hasleacrucigera (W. Smith) Simonsen

BAC

r

Licmophorahyalina (Kützing) Grunow

BAC

r

Licmophoraparadoxa (Lyngbye) C.A. Ag.

BAC

r

Melosiramoniliformis (O.F. Müller) C.A. Ag.

BAC

73.7

Melosiranummuloides C.A. Ag.

BAC

13.0

Navicula cf. cincta (Ehrenberg) Ralfs

BAC

1.7

Navicula cf. perminuta Grunow

BAC

1.3

Navicularadiosa Kützing

BAC

r

Nitzschiacapitellata Hustedt

BAC

0.5

Nitzschiagracilis Hantzsch

BAC

r

Nitzschiamicrocephala Grunow

BAC

r

Nitzschiasigma (Kützing) W. Smith

BAC

r

Odontellaaurita (Lyngbye) C.A. Ag.

BAC

8.7

Pseudanabaena sp.

CYA

r

Skeletonemacostatum (Greville) Cleve

BAC

r

Spirulinasubsalsa Oersted

CYA

r

Stauroneis simulans (Donkin) Ross

BAC

r

Tabulariafasciculata (C.A. Ag.) Williams & Round

BAC

r

Tryblionellaapiculata Gregory

BAC

r

About this article

Cite this article

Hillebrand, H. Temperature mediates competitive exclusion and diversity in benthic microalgae under different N:P stoichiometry. Ecol Res 26, 533–539 (2011). https://doi.org/10.1007/s11284-011-0810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-011-0810-y

Keywords

Navigation