Ecological Research

, Volume 25, Issue 3, pp 673–681 | Cite as

The exploratory analysis of autocorrelation in animal-movement studies

  • Stéphane Dray
  • Manuela Royer-Carenzi
  • Clément Calenge
Original Article


Studies of animal movements have been popularized for many large and shy species by the increasing use of radio telemetry methods (VHF and GPS technologies). Data are collected with high sampling frequency, and consist of successive observations of the position of an individual animal. The statistical analysis of such data poses several problems due to the lack of independence of successive observations. However, the statistical description of the temporal autocorrelation between successive steps is rarely performed by ecologists studying the patterns of animals movements. The aim of this paper is to warn ecologists against the consequences of failing to consider this aspect. We discuss the various issues related to analyzing autocorrelated data, and show how the exploratory analysis of autocorrelation can both reveal important biological insights and help to improve the accuracy of movement models. We suggest some tools that can be used to measure, test, and adjust for temporal autocorrelation. A short ecological illustration is presented.


Autocorrelation function Independence test GPS Radio telemetry Permutation test 



We are grateful to Jon Swenson and to the Scandinavian Brown Bear Research Project for kindly providing the data. Financial support has been provided by the ANR (project Mobilité ANR-05-BDIV-008) and the ONCFS. We would like to thank Jean-Michel Gaillard, Jodie Martin, and Dominique Allainé for their comments on earlier drafts of this paper.

Supplementary material

11284_2010_701_MOESM1_ESM.pdf (138 kb)
PDF (137 KB)


  1. Aschoff J (1966) Circadian activity pattern with two peaks. Ecology 47:657–662CrossRefGoogle Scholar
  2. Austin D, Bowen W, McMillan J (2004) Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator. Oikos 105:15–30CrossRefGoogle Scholar
  3. Bailey H, Thompson P (2006) Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging. J Anim Ecol 75:456–465CrossRefPubMedGoogle Scholar
  4. Banks J, Yasenak C (2003) Effects of plot vegetation diversity and spatial scale on Coccinella septempunctata movement in the absence of prey. Entomol Exp Appl 108:197–204CrossRefGoogle Scholar
  5. Bergman C, Schaeffer J, Luttich S (2000) Caribou movement as a correlated random walk. Oecologia 123:364–374CrossRefGoogle Scholar
  6. Bourgoin G, Garel M, Dubray D, Maillard D, Gaillard J (2009) What determines global positioning system fix success when monitoring free-ranging mouflon? Eur J Wildl Res 55:603–613CrossRefGoogle Scholar
  7. Bowne D, Peles J, Barrett G (1999) Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus). Landsc Ecol 14:53–65CrossRefGoogle Scholar
  8. Brillinger D, Preisler H, Ager A, Kie J (2004) An exploratory data analysis (EDA) of the paths of moving animals. J Stat Plan Infer 122:43–63CrossRefGoogle Scholar
  9. Cain M (1989) The analysis of angular data in ecological field studies. Ecology 70:1540–1543CrossRefGoogle Scholar
  10. Cain M, Carson W, Root R (1991) Long-term suppression of insect herbivores increases the production and growth of Solidago atissima rhizomes. Oecologia 88:251–257CrossRefGoogle Scholar
  11. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  12. Calenge C, Dray S, Royer-Carenzi M (2009) The concept of animals trajectories from a data analysis perspective. Ecol Inform 4:34–41CrossRefGoogle Scholar
  13. Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A (2005) Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol 147:583–591CrossRefGoogle Scholar
  14. De Solla S, Bonduriansky R, Brooks R (1999) Eliminating autocorrelation reduces biological relevance of home range estimates. J Anim Ecol 68:221–234CrossRefGoogle Scholar
  15. Diggle P (1990) Time series: a biostatistical introduction. Oxford University Press, OxfordGoogle Scholar
  16. Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  17. Dumont C, Himmelman J, Robinson S (2007) Random movement pattern of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 340:80–89CrossRefGoogle Scholar
  18. Dunn J, Gipson P (1977) Analysis of radio telemetry data in studies of home range. Biometrics 33:85–101CrossRefGoogle Scholar
  19. Firle S, Bommarco R, Ekbom B, Natiello M (1998) The influence of movement and resting behavior on the range of three carabid beetles. Ecology 79:2113–2122CrossRefGoogle Scholar
  20. Fisher N (1996) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  21. Fortin D, Morales J, Boyce MS (2005) Elk winter foraging at fine scale in Yellowstone National Park. Oecologia 145:335–346CrossRefPubMedGoogle Scholar
  22. Frair J, Nielsen SE, Merrill E, Lele S, Boyce MS, Munro R, Stenhouse G, Beyer H (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41:201–212CrossRefGoogle Scholar
  23. Frair J, Merrill E, Visscher D, Fortin D, Beyer H, Morales J (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc Ecol 20:273–287CrossRefGoogle Scholar
  24. Graves T, Waller J (2006) Understanding the causes of missed global positioning system telemetry fixes. J Wildl Manag 70:844–851CrossRefGoogle Scholar
  25. Griffith DA, Peres-Neto P (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613CrossRefPubMedGoogle Scholar
  26. Jammalamadaka S, Sengupta A (2001) Topics in circular statistics. World Scientific Press, SingaporeCrossRefGoogle Scholar
  27. Jupp P, Mardia K (1980) A general correlation coefficient for directional data and related regression problems. Biometrika 67:163–173CrossRefGoogle Scholar
  28. Kareiva P, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238CrossRefGoogle Scholar
  29. Lancaster J, Buffin-Bélanger T, Reid I, Rice S (2006) Flow- and substratum-mediated movement by a stream insect. Freshw Biol 51:1053–1069CrossRefGoogle Scholar
  30. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  31. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam Google Scholar
  32. Lorch P, Sword G, Gwynne D, Anderson G (2005) Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecol Entomol 30:548–555CrossRefGoogle Scholar
  33. Marsh L, Jones R (1988) The form and consequences of random walk movement models. J Theor Biol 133:113–131CrossRefGoogle Scholar
  34. Martin J, Calenge C, Quenette P, Allainé D (2008) Importance of movement constraints in habitat selection studies. Ecol Model 213:257–262CrossRefGoogle Scholar
  35. McCulloch C, Cain M (1989) Analyzing discrete movement data as a correlated random walk. Ecology 70:383–388CrossRefGoogle Scholar
  36. Morales J, Ellner S (2002) Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology 83:2240–2247CrossRefGoogle Scholar
  37. Nathan R, Getz W, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse P (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059CrossRefPubMedGoogle Scholar
  38. Nolet B, Mooij W (2002) Search paths of swans foraging on spatially autocorrelated tubers. J Anim Ecol 71:451–462CrossRefGoogle Scholar
  39. Odendaal F, Turchin P, Stermitz F (1989) Influence of host-plant density and male harassment on the distribution of female Euphydras anicia (Nymphalidae). Oecologia 78:283–288CrossRefGoogle Scholar
  40. Parks E, Derocher A, Lunn N (2006) Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can J Zool 84:1281–1294CrossRefGoogle Scholar
  41. Patterson T, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94CrossRefPubMedGoogle Scholar
  42. Peres-Neto P (2006) A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models. Oecol Bras 10:105–119CrossRefGoogle Scholar
  43. Preisler H, Ager A, Johnson B, Kie J (2004) Modeling animal movements using stochastic differential equations. Environmetrics 15:643–657CrossRefGoogle Scholar
  44. Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation-level parameters. Am Nat 164:130–153CrossRefGoogle Scholar
  45. Root R, Kareiva P (1984) The search of resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165CrossRefGoogle Scholar
  46. Schaeffer J, Messier F (1997) Footedness in foraging muskoxen Ovibos moschatus. Acta Theriol 42:335–338Google Scholar
  47. Schick R, Loarie S, Colchero F, Best B, Boustany A, Conde D, Halpin P, Joppa L, McClellan C, Clark J (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350CrossRefPubMedGoogle Scholar
  48. Siniff D, Jessen C (1969) A simulation model of animal movement patterns. Adv Ecol Res 6:185–219CrossRefGoogle Scholar
  49. Solow AR (1990) A note on the statistical properties of animal locations. J Math Biol 29:189–193CrossRefPubMedGoogle Scholar
  50. Swihart R, Slade N (1985a) Testing for independence of observations in animal movements. Ecology 66:1176–1184CrossRefGoogle Scholar
  51. Swihart RK, Slade NA (1985b) Influence of sampling interval on estimates of home-range size. J Wild Manage 49:1019–1025CrossRefGoogle Scholar
  52. Tukey J (1977) Exploratory data analysis. Addison-Wesley, ReadingGoogle Scholar
  53. Tukey J (1980) We need both exploratory and confirmatory. Am Stat 34:23–25CrossRefGoogle Scholar
  54. Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, SunderlandGoogle Scholar
  55. von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 12:367–395CrossRefGoogle Scholar
  56. von Neumann J, Kent R, Bellinson HR, Hart B (1941) The mean square successive difference. Ann Math Stat 12:153–162CrossRefGoogle Scholar
  57. Wald A, Wolfowitz J (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat 14:378–388CrossRefGoogle Scholar
  58. Wittemyer G, Polansky L, Douglas-Hamilton I, Getz W (2008) Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses. Proc Natl Acad Sci 105:19108–19113CrossRefPubMedGoogle Scholar

Copyright information

© The Ecological Society of Japan 2010

Authors and Affiliations

  • Stéphane Dray
    • 1
  • Manuela Royer-Carenzi
    • 2
  • Clément Calenge
    • 3
  1. 1.Laboratoire de Biométrie et Biologie EvolutiveUniversité de Lyon, Université Lyon 1, CNRS, UMR 5558VilleurbanneFrance
  2. 2.Evolution Biologique et Modélisation, case 5Université de Provence, LATP, CNRS-UMR 6632Marseille Cedex 3France
  3. 3.Direction des études et de la rechercheOffice national de la chasse et de la faune sauvageAuffargisFrance

Personalised recommendations