Skip to main content
Log in

Predictive modeling of the potential natural vegetation pattern in northeast China

  • Original Article
  • Published:
Ecological Research

Abstract

Based on the characteristics of natural vegetation distribution in northeast China, using multivariate analysis and geographical information system technology, we established a regional ‘vegetation–environment’ model to simulate geographical distribution of 16 natural vegetation types under present environmental conditions, representing the potential natural vegetation (PNV) of northeast China, on the basis of digital maps of seven environmental variables including climate and topography. Comparison of simulated PNVs distributions with the actual natural vegetation distribution indicated a good agreement, with overall predictive accuracy of 66.9% and overall Kappa value of 0.67. The predictions of model, however, were poor, for only 0.62 of AUC value was yielded. The current resolution and accuracy of the model can be applied to simulate and map the natural vegetation pattern at the regional scale and also used to analyze the effect of climatic changes on natural vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonic O, Bukovec D, Marki A, Hatic D (2000) Spatial distribution of major forest types in Croatia as function of microclimate. Nat Groat 1:1–13

    Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508. doi:10.2307/3236077

    Article  Google Scholar 

  • Chang HS, Yang DA, Ni WG (1993) The potential evapotranspiration (PE) index for vegetation and vegetation-climatic classification (III)—an introduction of main methods and PEP program (in Chinese). J Plant Ecol 2:97–109

    Google Scholar 

  • China Vegetation Atlas Editorial Committee of the Chinese Academy of Science (2001) Atlas China vegetation (in Chinese). Science Press, Beijing

    Google Scholar 

  • Chinese Central Meteorological Office (2005) Climatological data of China (in Chinese). China Meteorology Press, Beijing

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. In: Golley FB (ed) Ecolocical succession. Hutchingon & Ross, Dowden, pp 185–186

    Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284. doi:10.2307/2256278

    Article  Google Scholar 

  • Cowen DJ (1988) GIS versus DBMs: what is the difference? Photogramm Eng Rem S 54:1551–1555

    Google Scholar 

  • Cross JR (2006) The potential natural vegetation of Ireland. Biol Environ 2:65–116

    Google Scholar 

  • Editorial Committee for Vegetation of China (1980) Vegetation of China (in Chinese). Science Press, Beijing

    Google Scholar 

  • Editorial Committee for Vegetation of Inner Mongolia (1985) Vegetation of Inner Mongolia (in Chinese). Science Press, Beijing

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  • Fischer HS (1990) Simulating the distribution of plant communities in an alpine landscape. Coenoses 5:37–43

    Google Scholar 

  • Fischer HS (1994) Simulation der räumlichen Verteilung von Pflanzengeselschaften auf der Basis von Standortskarten Dargestellt am Beispiel des MaB-Testgebiets Davos. Veröff Geobot Inst ETH Stiftung Rübel Zürich 122:1–143

  • Franklin J (1995) Predictive vegetation mapping: geographic modeling of biospatial pattern in relation to environmental gradients. Prog Phys Geogr 4:474–499. doi:10.1177/030913339501900403

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Härdtle W (1995) On the theoretical concept of the potential natural vegetation and proposals for an up-to-date modification. Folia Geobot 3:263–276. doi:10.1007/BF02803708

    Article  Google Scholar 

  • Haxeltine A, Preentice IC, Cresswell ID (1996) A coupled carbon and water flux model to predict vegetation structure. J Veg Sci 7:651–666. doi:10.2307/3236377

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68:465–485

    Article  Google Scholar 

  • Kalkhoven JTR, Van der werf S (1988) Mapping the potential natural vegetation. In: Küchler AW, Zonneveld IS (eds) Vegetation mapping. Kluwer, Dordrecht

    Google Scholar 

  • Kessell SR (1976) Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ Manage 1:39–48. doi:10.1007/BF01867398

    Article  Google Scholar 

  • Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemässen Modifikation. Tuxenia 7:53–67

    Google Scholar 

  • Küchler AW (1964) Potential natural vegetation of the conterminous United States. Am Geogr Soc Spec Publ No. 36

  • Küchler AW, Zonneveld IS (1989) Vegetation mapping. Kluwer Academic Publishers, Dordrecht

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310

    Article  PubMed  CAS  Google Scholar 

  • Lindacher R (1996) Verifikation der potentiellen natürlichen Vegetation (PNV): Schwachstellen und Entwicklungperspektiven. Flora 192:379–391

    Google Scholar 

  • Liu HM, Wu SH, Zheng D, Yang QY (2004) The study on the potential natural vegetation and future prospect (in Chinese). Prog In Geogr 1:62–70

    Google Scholar 

  • Martinez-Taberner A, Ruiz-Perez M, Mestre I, Fortenza V (1992) Predicting of potential submerged vegetation in a silted coastal marsh, Albufera of Majorca, Balearic Islands. J Environ Manage 35:1–12. doi:10.1016/S0301-4797(05)80124-0

    Article  Google Scholar 

  • Matsui T, Yagihashi T, Nakaya T, Taoda H, Tanaka N (2004a) Climatic controls on distribution of Fagus crenata forests in Japan. J Veg Sci 15:57–66. doi:10.1658/1100-9233(2004)015[0057:CCODOF]2.0.CO;2

    Google Scholar 

  • Matsui T, Yagihashi T, Nakaya T, Taoda H, Yoshinaga S, Daimaru H, Tanaka N (2004b) Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J Veg Sci 15:605–614. doi:10.1658/1100-9233(2004)015[0605:PDVASI]2.0.CO;2

    Google Scholar 

  • Members VEMP (1995) Vegetation/ecosystem mapping and analysis project (VEMAP): a comparison of biogeography and biogeochemistry models in the context of global change. Global Biogeochem Cycles 9:407–437. doi:10.1029/95GB02746

    Article  Google Scholar 

  • Miyawaki A (1998) Restoration of urban green environments based on the theories of vegetation ecology. Ecol Eng 11:157–165. doi:10.1016/S0925-8574(98)00033-0

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Modell 62:275–293. doi:10.1016/0304-3800(92)90003-W

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Google Scholar 

  • Neuhäuslová Z (2001) Potential natural vegetation of the Czech Republic. Braun-Blanquetia 30:1–80

    Google Scholar 

  • Neuhäuslová Z, Moravec J, Chytrý M, Ložek V (1997) Map of potential natural vegetation of the Czech Republic. Institute of Botany, Pruhonice

    Google Scholar 

  • Ni J (2000) A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mt Res Dev 1:80–89. doi:10.1659/0276-4741(2000)020[0080:ASOBOT]2.0.CO;2

    Article  Google Scholar 

  • Ni J, Sykes MT, Prentice IC, Cramer W (2000) Modeling the vegetation of china using the process-based equilibrium terrestrial biosphere model BIOME3. Glob Ecol Biogeogr 9:463–479. doi:10.1046/j.1365-2699.2000.00206.x

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol model 128:127–147

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP et al (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134. doi:10.2307/2845499

    Article  Google Scholar 

  • Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615

    Article  PubMed  CAS  Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233

    Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetation concepts and terms. Ecology 16:284–307. doi:10.2307/1930070

    Article  Google Scholar 

  • Thuiller W, Vaydera J, Pino J, Sabate S, Lavorel S, Gracia C (2003a) Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob Ecol Biogeogr 12:313–325

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2003b) Generalized models vs. classification tree analysis: predicting spatial distribution of plant species at different scales. J Veg Sci 14:669–680. doi:10.1658/1100-9233(2003)014[0669:GMVCTA]2.0.CO;2

    Article  Google Scholar 

  • Tichý L (1999) Predictive modeling of the potential natural vegetation pattern in the Podyjí National Park, Czech Republic. Folia Geobot 34:243–252. doi:10.1007/BF02913398

    Article  Google Scholar 

  • Trautmann W (1966) Erläueterungen zur Karte der potentiellen natürlichen Vegetation der Bundesrepublik Deutschland, Blatt 85 Minden. Schriftenr Vegetationskd 1–138

  • Tüxen R (1956) Die heutige potentille natuerliche vegetation als Gegenst vegetation skartierung. Angew Pflanzensoziologie 13:5–42

    Google Scholar 

  • Vuerich LG, Poldini L, Feoli E (2001) Model for the potential natural vegetation mapping of Friuli Venezia-Giulai (NE Italy) and its application for a biogeographic classification of the region. Plant Biosyst 3:319–336

    Google Scholar 

  • Yoshino MM (1975) Climate in small area. University of Tokyo Press, Tokyo

    Google Scholar 

  • Zhao SQ (1983) Land classification and mapping in China. In: Ruddle K, Wu CJ (eds) Land resources of the People’s Republic of China. The United Nations University

  • Zhao MS, Neilson RP, Yan XD, Dong WJ (2002) Modeling the vegetation of China under changing climate. Acta Geogr Sin 1:28–38

    Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine in Switzerland: species versus community approach. J Veg Sci 10:469–482. doi:10.2307/3237182

    Article  Google Scholar 

  • Zou CJ, Xu WD (2004) Key problems in ecological research on vegetations in Northeast China. Chin J Appl Ecol 10:1711–1721

    Google Scholar 

Download references

Acknowledgments

This study was financed by the National Key Basic Planning Project of China (No. 2007CB106807; No. 2007CB416601), the National Natural Science Fund of China (No. 40861002), and the Scientific Research Fund of Inner Mongolia (No. 200711020603). We thank Prof. J. M. Niu and J.J. Dong for their help with the software application and Prof. Z.L. Liu and Prof. Z.Y. Zhu for their valuable comments on the manuscript. We also thank two anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamin Liu.

About this article

Cite this article

Liu, H., Wang, L., Yang, J. et al. Predictive modeling of the potential natural vegetation pattern in northeast China. Ecol Res 24, 1313–1321 (2009). https://doi.org/10.1007/s11284-009-0616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0616-3

Keywords

Navigation