Skip to main content
Log in

The ecology of terrestrial invertebrates on Pacific salmon carcasses

  • Original Article
  • Published:
Ecological Research

Abstract

In coastal streams throughout the north Pacific region, spawning salmon (Oncorhynchus spp.) subsidize terrestrial communities with their nutrients and carcasses. We document the previously unreported composition and ecology of terrestrial invertebrates using salmon carcasses in forest habitats from two high salmon density watersheds in coastal British Columbia. From experimental placement of 186 carcasses, terrestrial Diptera-dominated salmon carcass decay (85.5% of carcasses). Overall, we recorded over 60 species from salmon carcasses, including saprophagous Diptera and Coleoptera (15 spp.), dipteran predators (eight spp.) and parasitoids (four spp.), and opportunistic predators, scavengers, and detritivores (24 spp.). Using stable isotopes of nitrogen and carbon, we reconstruct the dietary niches of select species relative to salmon muscle tissue and previously sampled non-salmon feeding invertebrate species. From comparisons across seasons, sampling locations and larval and adult life stages, we find evidence for a diet of salmon tissue in flies (Calliphora terraenovae and Dryomyza anilis), and beetles (Nicrophorus investigator and Anthobium fimetarium). The parasitic wasps Alysia alticola and Atractodes sp. had the highest levels of enrichment of all species, representing their larval diet of fly larvae that have fed on salmon carcasses 1 year prior to adult wasp sampling. Temporal and spatial isotopic variation in insect indicator species varies by species mobility and the pathway of salmon nutrient uptake. Cataloguing these associations may be useful for developing indices of intact salmon runs, bear foraging, and subsequent nutrient transfer in coastal watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RS, Peck SB (1985) The carrion beetles of Canada and Alaska—Coleoptera: Silphidae and Agyrtidae. In: The insects and arachnids of Canada, part 13. Agriculture Canada, Ottawa, pp 1–121

  • Anderson WB, Polis GA (1998) Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes. Oikos 81:75–80. doi:10.2307/3546469

    Article  Google Scholar 

  • Ben-David M, Hanley TA, Klein DR, Schell DM (1997) Seasonal changes in diets of coastal and riverine mink: the role of spawning Pacific salmon. Can J Zool 75:803–811. doi:10.1139/z97-102

    Article  Google Scholar 

  • Ben-David M, Hanley TA, Schell DM (1998) Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity. Oikos 83:47–55. doi:10.2307/3546545

    Article  CAS  Google Scholar 

  • Bilby RE, Fransen BR, Bisson PA (1996) Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: evidence from stable isotopes. Can J Fish Aquat Sci 53:164–173. doi:10.1139/cjfas-53-1-164

    Article  Google Scholar 

  • Borror DJ, Delong DM, Triplehorn CA (1981) An introduction to the study of insects, 5th edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Carabel S, Godínez-Domínguez E, Verísimo P, Fernández L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336:254–261. doi:10.1016/j.jembe.2006.06.001

    Article  CAS  Google Scholar 

  • Cederholm CJ, Kundze MD, Murota T, Sibatani A (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24:6–15. doi:10.1577/1548-8446(1999)024<0006:PSC>2.0.CO;2

    Article  Google Scholar 

  • Christie KS, Reimchen TE (2008) Presence of salmon increases passerine density on Pacific Northwest streams. Auk 125:51–59. doi:10.1525/auk.2008.125.1.51

    Article  Google Scholar 

  • Christie KS, Hocking MD, Reimchen TE (2008) Tracing salmon nutrients in riparian food webs: isotopic evidence in a ground-foraging passerine. Can J Zool 86:1317–1323

    Article  CAS  Google Scholar 

  • Darimont CT, Paquet PC, Reimchen TE (2008) Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia. BMC Ecol 8:14. doi:10.1186/1472-6785-8-14

    Article  PubMed  Google Scholar 

  • Drake DC, Naiman RJ (2007) Reconstruction of Pacific salmon abundance from riparian tree-ring growth. Ecol Appl 17:1523–1542. doi:10.1890/06-1200.1

    Article  PubMed  CAS  Google Scholar 

  • Ellers J, van Alphen JJM (2002) A trade-off between diapause duration and fitness in female parasitoids. Ecol Entomol 27:279–284. doi:10.1046/j.1365-2311.2002.00421.x

    Article  Google Scholar 

  • Finney BP, Gregory-Eaves I, Sweetman J, Douglas MSV, Smol JP (2000) Impacts of climate change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795–799. doi:10.1126/science.290.5492.795

    Article  PubMed  CAS  Google Scholar 

  • Furniss RL, Carolin VM (1977) Western forest insects. Miscellaneous publication no. 1339, U.S. Department of Agriculture, Forest Service, Washington, DC

  • Gende SM, Quinn TP (2004) The relative importance of prey density and social dominance in determining energy intake by bears feeding on Pacific salmon. Can J Zool 82:75–85. doi:10.1139/z03-226

    Article  Google Scholar 

  • Gende SM, Quinn TP, Willson MF (2001) Consumption choice by bears feeding on salmon. Oecologia 127:372–382. doi:10.1007/s004420000590

    Article  Google Scholar 

  • Gende SM, Edwards RT, Willson MF, Wipfli MS (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928. doi:10.1641/0006-3568(2002)052[0917:PSIAAT]2.0.CO;2

    Article  Google Scholar 

  • Gende SM, Quinn TP, Hilborn R, Hendry AP, Dickerson B (2004) Brown bears selectively kill salmon with high energy content but only in habitats that facilitate choice. Oikos 104:518–528. doi:10.1111/j.0030-1299.2004.12762.x

    Article  Google Scholar 

  • Green RN, Klinka K (1994) A field guide to site identification and interpretation for the Vancouver forest region. Research Branch of the Ministry of Forests, Victoria, British Columbia

    Google Scholar 

  • Greenburg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577

    Google Scholar 

  • Gresh T, Lichatowich J, Schoonmaker P (2000) An estimation of historic and current levels of salmon production in the Northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25:15–21. doi:10.1577/1548-8446(2000)025<0015:AEOHAC>2.0.CO;2

    Article  Google Scholar 

  • Hatch MH (1953) The beetles of the Pacific Northwest. Part I: Introduction and Adephaga. University of Washington Publications in Biology 16(1). University of Washington Press, Seattle, Washington

  • Hatch MH (1957) The beetles of the Pacific Northwest. Part II: Staphiliniformia. University of Washington Publications in Biology 16(2). University of Washington Press, Seattle, Washington

  • Hilderbrand GV, Schwartz CC, Robbins CT, Jacoby ME, Hanley TA, Arthur SM, Servheen C (1999) The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can J Zool 77:132–138. doi:10.1139/cjz-77-1-132

    Article  Google Scholar 

  • Hobson KA, Sease JL, Merrick RL, Piatt JF (1997) Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbon. Mar Mamm Sci 13:114–132. doi:10.1111/j.1748-7692.1997.tb00615.x

    Article  Google Scholar 

  • Hocking MD, Reimchen TE (2002) Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecol 2:4. doi:10.1186/1472-6785-2-4

    Article  PubMed  Google Scholar 

  • Hocking MD, Reimchen TE (2006) Consumption and distribution of salmon (Oncorhynchus spp.) nutrients and energy by terrestrial flies. Can J Fish Aquat Sci 63:2076–2086. doi:10.1139/F06-110

    Article  Google Scholar 

  • Hocking MD, Ring RA, Reimchen TE (2006) Burying beetle Nicrophorus investigator reproduction on Pacific salmon carcasses. Ecol Entomol 31:5–12. doi:10.1111/j.0307-6946.2006.00747.x

    Article  Google Scholar 

  • Hocking MD, Darimont CT, Christie KS, Reimchen TE (2007) Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can J Zool 85:437–442. doi:10.1139/Z07-016

    Article  Google Scholar 

  • Jauquet J, Pittman N, Heinis JA, Thompson S, Tatyama N, Cederholm J (2003) Observations of chum salmon consumption by wildlife and changes in water chemistry at Kennedy creek during 1997–2000. Am Fish Soc Symp 34:71–88

    Google Scholar 

  • Kaeriyama M, Nakamura M, Edpalina R, Bower JR, Yamaguchi H, Walker RV, Myers KW (2004) Change in feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in the central Gulf of Alaska in relation to climate events. Fish Oceanogr 13:197–207. doi:10.1111/j.1365-2419.2004.00286.x

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27. doi:10.1139/cjz-78-1-1

    Article  Google Scholar 

  • Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222. doi:10.1111/j.1365-2664.2006.01224.x

    Article  CAS  Google Scholar 

  • Langellotto GA, Rosenheim JA, Williams MR (2006) Assessing trophic interactions in a guild of primary parasitoids and facultative hyperparasitoids: stable isotope analysis. Oecologia 150:291–299. doi:10.1007/s00442-006-0514-0

    Article  PubMed  Google Scholar 

  • McConnaughey T, McRoy CP (1979) Food-web structure and fractionation of carbon isotopes in the Bering Sea. Mar Biol (Berl) 53:257–262. doi:10.1007/BF00952434

    Article  CAS  Google Scholar 

  • Meehan EP, Seminet-Reneau EE, Quinn TP (2005) Bear predation on Pacific salmon facilitates colonization of carcasses by fly maggots. Am Midl Nat 153:142–151. doi:10.1674/0003-0031(2005)153[0142:BPOPSF]2.0.CO;2

    Article  Google Scholar 

  • Pauly D, Trites AW, Capuli E, Christensen V (1998) Diet composition and trophic levels of marine mammals. J Mar Sci 55:467–481

    Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Quinn TP, Kinnison MT (1999) Size-selective and sex-selective predation by brown bears on sockeye salmon. Oecologia 121:273–282. doi:10.1007/s004420050929

    Article  Google Scholar 

  • Rainio J, Neimelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506. doi:10.1023/A:1022412617568

    Article  Google Scholar 

  • Reimchen TE (1994) Further studies of black bear and chum salmon in stream and estuarine habitats at Bag Harbour, Gwaii Haanas. Canadian Parks Service

  • Reimchen TE (2000) Some ecological and evolutionary aspects of bear-salmon interactions in coastal British Columbia. Can J Zool 78:448–457. doi:10.1139/cjz-78-3-448

    Article  Google Scholar 

  • Reimchen TE, Mathewson D, Hocking MD, Moran J, Harris D (2003) Isotopic evidence for enrichment of salmon-derived nutrients in vegetation, soil, and insects in riparian zones in coastal British Columbia. Am Fish Soc Symp 34:59–69

    Google Scholar 

  • Spellerberg IF (1993) Monitoring ecological change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stockner JG (2003) Nutrients in salmonid ecosystems: sustaining production and biodiversity. Am Fish Soc, Bethesda, Maryland

    Google Scholar 

  • Tallamy DW, Pesek JD (1996) Carbon isotope signatures of elytra reflect larval diet in Luperine Rootworms (Coleoptera: Chrysomelidae). Environ Entomol 25:1167–1172

    Google Scholar 

  • Tibbets TM, Wheeless LA, Martínez del Rio C (2008) Isotopic enrichment without change in diet: an ontogenetic shift in δ15N during insect metamorphosis. Funct Ecol 22:109–113

    Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. doi:10.1007/s00442-003-1270-z

    Article  PubMed  Google Scholar 

  • Wilkinson CE, Hocking MD, Reimchen TE (2005) Uptake of salmon-derived nitrogen by mosses and liverworts in Coastal British Columbia. Oikos 108:85–98. doi:10.1111/j.0030-1299.2005.13277.x

    Article  CAS  Google Scholar 

  • Willson MF, Halupka KC (1995) Anadromous fish as keystone species in vertebrate communities. Conserv Biol 9:489–497. doi:10.1046/j.1523-1739.1995.09030489.x

    Article  Google Scholar 

  • Wipfli MS, Hudson J, Caouette J (1998) Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, USA. Can J Fish Aquat Sci 55:1503–1511. doi:10.1139/cjfas-55-6-1503

    Article  Google Scholar 

  • Yanai S, Kochi K (2005) Effects of salmon carcasses on experimental stream ecosystems in Hokkaido, Japan. Ecol Res 20:471–480. doi:10.1007/s11284-005-0056-7

    Article  Google Scholar 

  • Zhang YX, Negishi JN, Richardson JS, Kolodziejczyk R (2003) Impacts of marine-derived nutrients on stream ecosystem functioning. Proc R Soc Lond 270:2117–2123. doi:10.1098/rspb.2003.2478

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to C. Brinkmeier, K. Christie, C. Darimont, B. Foster, T. Gladstone, R. Hocking, S. Hocking, R. Johnson, L. Jorgenson, K. Petkau, C. Wilkinson, B. Windsor, D. Windsor, and M. Windsor, as well as the Raincoast Conservation Society and the Heiltsuk First Nations for field support. Thanks to all invertebrate taxonomists for identifications, M. Durban and J. Wray from Blue Fjord Charters, E. Darling, W. Palen and Z. Lindo for review comments, B. Hawkins at the University of Victoria, J. Reynolds at Simon Fraser University, and M. Stocki for stable isotope analysis at the University of Saskatchewan. Financial support was provided by grants to T. Reimchen from the David Suzuki Foundation and the Natural Sciences and Engineering Research Council of Canada (NSERC), and from Industrial Postgraduate scholarships to M. Hocking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan D. Hocking.

About this article

Cite this article

Hocking, M.D., Ring, R.A. & Reimchen, T.E. The ecology of terrestrial invertebrates on Pacific salmon carcasses. Ecol Res 24, 1091–1100 (2009). https://doi.org/10.1007/s11284-009-0586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0586-5

Keywords

Navigation