Ecological Research

, Volume 24, Issue 4, pp 711–722 | Cite as

Effects of habitat fragmentation by damming on salmonid fishes: lessons from white-spotted charr in Japan

  • Kentaro MoritaEmail author
  • Shoko H. Morita
  • Shoichiro Yamamoto
Miyadi Award


Dam construction has serious consequences, and one of the most serious concerns is the fragmentation of riverine ecosystems. We reviewed the influence of habitat fragmentation on white-spotted charr Salvelinus leucomaenis populations. First, habitat fragmentation by damming has serious consequences in terms of alternative life-history strategies. Most fish in dammed-off areas do not migrate to the sea and instead become resident forms. This loss of the anadromous form negatively affects populations through decreased spawning biomass. In addition, the smaller population sizes in dammed-off habitats can negatively affect population dynamics through demographic, environmental, and genetic stochasticity. Therefore, the population viability is reduced in small, dammed-off habitats. White-spotted charr populations also likely experience different selection pressures after damming. Many of these effects of habitat fragmentation due to damming are not immediate but rather occur gradually over several generations. Because most Japanese dams were constructed after 1970, some effects of damming may not yet be obvious.


Isolation Anadromous PVA Extinction FA 



We are grateful to Yasuji Kanno, Kinya Nishimura, Hiroyuki Matsuda, and Toru Nagasawa for their support and invaluable suggestions during the study. We thank Jason Dunham for his constructive comments on an earlier version of this manuscript. This work was supported by a Grant-in-Aid for a Research Fellow of the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Young Scientists B (no. 19780155) from JSPS.


  1. Arai T, Morita K (2005) Evidence of multiple migrations between freshwater and marine habitats of Salvelinus leucomaenis. J Fish Biol 66:888–895. doi: 10.1111/j.0022-1112.2005.00654.x CrossRefGoogle Scholar
  2. Bohlin T, Pettersson J, Degerman E (2001) Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost. J Anim Ecol 70:112–121. doi: 10.1046/j.1365-2656.2001.00466.x CrossRefGoogle Scholar
  3. Bohlin T, Pettersson JCE, Johnsson JI (2002) Is selection for territorial aggression in brown trout density-dependent? J Fish Biol 60:1335–1337. doi: 10.1111/j.1095-8649.2002.tb01726.x CrossRefGoogle Scholar
  4. Caro TM, Laurenson MK (1994) Ecological and genetic factors on conservation: a cautionary tale. Science 263:485–486. doi: 10.1126/science.8290956 PubMedCrossRefGoogle Scholar
  5. Charles S, Bravo De La Parra R, Mallet JP, Persat H, Auger P (2000) Annual spawning migration in modelling brown trout population dynamics inside an arborescent river network. Ecol Modell 133:15–31. doi: 10.1016/S0304-3800(00)00277-5 CrossRefGoogle Scholar
  6. Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252. doi: 10.1016/S0169-5347(00)89081-3 CrossRefGoogle Scholar
  7. Craig JK, Foote CJ (2001) Countergradient variation and secondary sexual color: phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution 52:380–391. doi: 10.1111/j.0014-3820.2001.tb01301.x CrossRefGoogle Scholar
  8. Dahl J, Peckarsky BL (2002) Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology 83:1620–1634Google Scholar
  9. Dunham JB, Rieman BE (1999) Metapopulation structure of bull trout: influence of physical, biotic, and geometrical landscape characteristics. Ecol Appl 9:642–655. doi: 10.1890/1051-0761(1999)009[0642:MSOBTI]2.0.CO;2 CrossRefGoogle Scholar
  10. Eliassen RA, Johnsen HK, Mayer I, Jobling M (1998) Contrasts in osmoregulatory capacity of two Arctic charr, Salvelinus alpinus (L.), strains from northern Norway. Aquaculture 168:255–269. doi: 10.1016/S0044-8486(98)00353-6 CrossRefGoogle Scholar
  11. Endo S, Tsuboi J, Iwata T (2006) Effects of damming on the persistence of white-spotted charr and red-spotted masu salmon populations (in Japanese with English summary). Jpn J Conserv Ecol 11:4–12Google Scholar
  12. Fausch KD, Rieman BE, Dunham JB, Young MK, Peterson DP. The invasion versus isolation dilemma: tradeoffs in managing native salmonids with barriers to upstream movement. Conserv Biol (in press)Google Scholar
  13. Frankham R (2003) Genetics and conservation biology. CR Biologies 326:S22–S29. doi: 10.1016/S1631-0691(03)00023-4 CrossRefGoogle Scholar
  14. Fukushima M (2005) The dam-related decline of freshwater fish diversity—analyses of the data collected from Hokkaido during the last half century (in Japanese). Jpn J Ecol 55:347–349Google Scholar
  15. Fukushima M, Kameyama S, Kaneko M, Nakao K, Steel EA (2007) Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshw Biol 52:1511–1524. doi: 10.1111/j.1365-2427.2007.01783.x CrossRefGoogle Scholar
  16. Gudkov PK (1992) Data on the biology of the far eastern char, Salvelinus leucomaenis, in the sea of Okhotsk Basin. J Ichthyol 32(3):9–23Google Scholar
  17. Han M, Fukushima M, Kameyama S, Fukushima T, Matsushita B (2008) How do dams affect freshwater fish distributions in Japan? Statistical analysis of native and nonnative species with various life histories. Ecol Res 23:725–743. doi: 10.1007/s11284-007-0432-6 CrossRefGoogle Scholar
  18. Hasegawa K, Maekawa K (2008) Nonnative brown trout invasion into native white-spotted charr sanctuary in Monbetsu stream, Hokkaido, Japan (in Japanese). Nippon Suisan Gakkai Shi 74:432–434. doi: 10.2331/suisan.74.432 CrossRefGoogle Scholar
  19. Hubert WA, Alexander CB (1995) Observer variation in counts of meristic traits affects fluctuating asymmetry. N Am J Fish Manage 15:156–158. doi:10.1577/1548-8675(1995)015<0156:OVICOM>2.3.CO;2CrossRefGoogle Scholar
  20. Johnston IA, Abercromby M, Andersen Ø (2005) Loss of muscle fibres in a landlocked dwarf Atlantic salmon population. Biol Lett 1:419–422. doi: 10.1098/rsbl.2005.0377 PubMedCrossRefGoogle Scholar
  21. Jonsson B (1982) Diadromous and resident trout Salmo trutta: is their difference due to genetics? Oikos 38:297–300. doi: 10.2307/3544668 CrossRefGoogle Scholar
  22. Kaeriyama M (1996) Effects of population density and habitat environment on life history strategy and migration of juvenile sockeye (Oncorhynchus nerka) and chum salmon (O. keta). Sci Rep Hokkaido Salmon Hatch 50:101–111Google Scholar
  23. Kaeriyama M (2005) Effects of anadromous fish on material cycle in the riparian ecosystem (in Japanese with English summary). Jpn J Ecol 55:51–59Google Scholar
  24. Kano Y, Shimizu Y (2007) Threatened fishes of the world: Oncorhynchus iwame (Kimura & Nakamura 1961) (Salmonidae). Environ Biol Fishes 78:215–216. doi: 10.1007/s10641-006-0019-z CrossRefGoogle Scholar
  25. Kendall BE, Fox GA (2002) Variation among individuals and reduced demographic stochasticity. Conserv Biol 16:109–116. doi: 10.1046/j.1523-1739.2002.00036.x CrossRefGoogle Scholar
  26. Kimura S (1970) On the large specimens of non-migratory char obtained from Deya River in Yamagata Prefecture (in Japanese with English summary). Jpn J Ichthyol 17:82–83Google Scholar
  27. Kishi D, Maekawa K (2009) Stream-dwelling Dolly Varden (Salvelinus malma) density and habitat characteristics in stream sections installed with low-head dams in the Shiretoko Peninsula, Hokkaido, Japan. Ecol Res (in press)Google Scholar
  28. Kishi D, Takayama H, Kato H, Fukushima M (2003) Riverine fish fauna in the Hidaka region, Hokkaido (in Japanese with English summary). Res Bull Hokkaido Univ Forests 60:1–18Google Scholar
  29. Koizumi I, Maekawa K (2004) Metapopulation structure of stream-dwelling Dolly Varden charr inferred from patterns of occurrence in the Sorachi River basin, Hokkaido, Japan. Freshw Biol 49:973–981. doi: 10.1111/j.1365-2427.2004.01240.x CrossRefGoogle Scholar
  30. Koizumi I, Yamamoto S, Maekawa K (2006) Female-biased migration of stream-dwelling Dolly Varden in the Shiisorapuchi River, Hokkaido, Japan. J Fish Biol 68:1513–1529. doi: 10.1111/j.0022-1112.2006.001038.x CrossRefGoogle Scholar
  31. Lahti K, Laurila A, Enberg K, Piironen J (2001) Variation in aggressive behaviour and growth rate between populations and migratory forms in the brown trout, Salmo trutta. Anim Behav 62:935–944. doi: 10.1006/anbe.2001.1821 CrossRefGoogle Scholar
  32. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460. doi: 10.1126/science.3420403 PubMedCrossRefGoogle Scholar
  33. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Pop Ecol 40:259–269. doi: 10.1007/BF02763457 CrossRefGoogle Scholar
  34. Leary RF, Allendorf FW, Knudsen KL (1984) Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Am Nat 124:540–551. doi: 10.1086/284293 CrossRefGoogle Scholar
  35. Maekawa K, Nakano S, Yamamoto S (1994) Spawning behaviour and size-assortative mating of Japanese charr in an artificial lake-inlet stream system. Environ Biol Fishes 39:109–117. doi: 10.1007/BF00004927 CrossRefGoogle Scholar
  36. Maekawa K, Koseki Y, Iguchi K, Kitano S (2001) Skewed reproductive success among male white-spotted charr land-locked by an erosion control dam: implications for effective population size. Ecol Res 16:727–735Google Scholar
  37. Matsuda H, Morita K (2003) Environment risk of organisms. In: Nakanishi J, Masunaga S, Matsuda H (eds) Practice: calculation of environment risk (in Japanese). Iwanami-shoten, Tokyo, pp 159–168Google Scholar
  38. Miyadi D (1960) A story of ayu (in Japanese). Iwanami-shoten, TokyoGoogle Scholar
  39. Morita K (2001) The growth history of anadromous white-spotted charr in northern Japan: a comparison between river and sea life. J Fish Biol 59:1556–1565. doi: 10.1111/j.1095-8649.2001.tb00220.x CrossRefGoogle Scholar
  40. Morita K, Fukuwaka M (2007) Why age and size at maturity have changed in Pacific salmon. Mar Ecol Prog Ser 335:289–294. doi: 10.3354/meps335289 CrossRefGoogle Scholar
  41. Morita K, Morita SH (2002) Rule of age and size at maturity: individual variation in maturation history of resident white-spotted charr. J Fish Biol 61:1230–1238. doi: 10.1111/j.1095-8649.2002.tb02467.x CrossRefGoogle Scholar
  42. Morita K, Morita SH (2007) Alternative life histories and population process of white-spotted charr (salmonid fish) (in Japanese). Jpn J Ecol 57:13–24Google Scholar
  43. Morita K, Suzuki T (1999) Shift of food habit and jaw position of white-spotted charr after damming. J Fish Biol 55:1156–1162. doi: 10.1111/j.1095-8649.1999.tb02066.x CrossRefGoogle Scholar
  44. Morita K, Takashima Y (1998) Effect of female size on fecundity and egg size in white-spotted charr: comparison between sea-run and resident forms. J Fish Biol 53:1140–1142. doi: 10.1111/j.1095-8649.1998.tb00471.x CrossRefGoogle Scholar
  45. Morita K, Yamamoto S (2000) Occurrence of a deformed white-spotted charr, Salvelinus leucomaenis (Pallas), population on the edge of its distribution. Fish Manage Ecol 7:551–553. doi: 10.1046/j.1365-2400.2000.00226.x CrossRefGoogle Scholar
  46. Morita K, Yamamoto S (2001) Contrasts in movement behavior of juvenile white-spotted charr between stocks above and below a dam. Fish Sci 67:179–181. doi: 10.1046/j.1444-2906.2001.00218.x CrossRefGoogle Scholar
  47. Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv Biol 16:1318–1323. doi: 10.1046/j.1523-1739.2002.01476.x CrossRefGoogle Scholar
  48. Morita K, Yamamoto S (2004) Consequences of riverine fragmentation by damming—rivers are corridors between forest and the sea. In: Maekawa K (ed) Ecology and evolution of salmonids (in Japanese). Bunichi Sougou Shuppan, Tokyo, pp 281–312Google Scholar
  49. Morita K, Yokota A (2002) Population viability of stream-resident salmonids after habitat fragmentation: a case study with white-spotted charr (Salvelinus leucomaenis). Ecol Modell 155:85–94. doi: 10.1016/S0304-3800(02)00128-X CrossRefGoogle Scholar
  50. Morita K, Yamamoto S, Hoshino N (2000) Extreme life history change of white-spotted char (Salvelinus leucomaenis) after damming. Can J Fish Aquat Sci 57:1300–1306. doi: 10.1139/cjfas-57-6-1300 CrossRefGoogle Scholar
  51. Nagasawa T, Morita K, Tsuboi J. Longitudinal distribution and changing of fish fauna of a mid-scale river, the Shoro River system in the eastern Hokkaido (in Japanese with English summary). Jpn J Ichthyol (in press)Google Scholar
  52. Nakano S, Inoue M, Kuwahara T, Toyoshima T, Hojyo H, Fujito E, Sugiyama H, Okuyama S, Sasa K (1995) Freshwater fish fauna in the Teshio and Nakagawa experimental forests and adjacent areas with reference to damming effects on their distribution (in Japanese with English summary). Res Bull Hokkaido Univ Forests 52:95–109Google Scholar
  53. Nakano S, Kitano F, Maekawa K (1996) Potential fragmentation and loss of thermal habitats for charrs in the Japanese archipelago due to climatic warming. Freshw Biol 36:711–722. doi: 10.1046/j.1365-2427.1996.d01-516.x CrossRefGoogle Scholar
  54. Nakamura T (1998) Significance of tributaries for Japanese charr. In: Mori S (ed) Water environment from the view point of fishes (in Japanese). Sinzansha-saitekku, Tokyo, pp 177–187Google Scholar
  55. Nakamura T (2001) Estimation of the distribution of genetically pure populations of the Japanese charr by inquiring survey (in Japanese with English summary). J Jpn Soc Eros Contr 53:3–9Google Scholar
  56. Nakamura T, Maruyama T, Watanabe S (2002) Residency and movement of stream-dwelling Japanese charr, Salvelinus leucomaenis, in a central Japanese mountain stream. Ecol Freshwat Fish 11:150–157. doi: 10.1034/j.1600-0633.2002.00014.x CrossRefGoogle Scholar
  57. Nordeng H (1983) Solution to the “char problem” based on Arctic char (Salvelinus alpinus) in Norway. Can J Fish Aquat Sci 40:1372–1387. doi: 10.1139/f83-159 CrossRefGoogle Scholar
  58. Northcote TG (1981) Juvenile current response, growth and maturity of above and below waterfall stocks of rainbow trout, Salmo gairdneri. J Fish Biol 18:741–751. doi: 10.1111/j.1095-8649.1981.tb03815.x CrossRefGoogle Scholar
  59. Northcote TG, Hartman GF (1988) The biology and significance of stream trout populations (Salmo spp.) living above and below waterfalls. Pol Arch Hydrobiol 35:409–442Google Scholar
  60. Olsen EM, Vøllestad LA (2001) Within-stream variation in early life-history traits in brown trout. J Fish Biol 59:1579–1588. doi: 10.1111/j.1095-8649.2001.tb00222.x CrossRefGoogle Scholar
  61. Olsson IC, Greenberg LA, Bergman E, Wysujack K (2006) Environmentally induced migration: the importance of food. Ecol Lett 9:645–651. doi: 10.1111/j.1461-0248.2006.00909.x PubMedCrossRefGoogle Scholar
  62. Onimaru K, Haneishi T, Yamaki M, Tomoda K (2002) The fauna of fish at the watersystem of Bihoro. Bull Bihoro Mus 10:11–30 in JapaneseGoogle Scholar
  63. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421. doi: 10.1146/ CrossRefGoogle Scholar
  64. Peckarsky BL, Taylor BW, McIntosh AR, McPeek MA, Lytle DA (2001) Variation in mayfly size at metamorphosis as a developmental response to risk of predation. Ecology 82:740–757CrossRefGoogle Scholar
  65. Peterson DP, Rieman BE, Dunham JB, Fausch KD, Young MK (2008) Analysis of trade-offs between threats of invasion by nonnative brook trout (Salvelinus fontinalis) and intentional isolation for native westslope cutthroat trout (Oncorhynchus clarkia lewisi). Can J Fish Aquat Sci 65:557–573. doi: 10.1139/F07-184 CrossRefGoogle Scholar
  66. Pringle CM, Freeman MC, Freeman BJ (2000) Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical–temperate comparisons. Bioscience 50:807–823. doi: 10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2 CrossRefGoogle Scholar
  67. Rieman BE, Allendorf FW (2001) Effective population size and genetic conservation criteria for bull trout. N Am J Fish Manage 21:756–764. doi:10.1577/1548-8675(2001)021<0756:EPSAGC>2.0.CO;2CrossRefGoogle Scholar
  68. Sato T (2006) Occurrence of deformed fish and their fitness-related traits in Kirikuchi charr, Salvelinus leucomaenis japonicus, the southernmost population of the genus Salvelinus. Zoolog Sci 23:593–599. doi: 10.2108/zsj.23.593 PubMedCrossRefGoogle Scholar
  69. Sato T, Harada Y (2008) Synchronous female spawning and male mating behaviour in a land-locked population of Japanese charr Salvelinus leucomaenis japonicus. Zoolog Sci 25:766–772. doi: 10.2108/zsj.25.766 PubMedCrossRefGoogle Scholar
  70. Savvaitova KA, Kuzishchin KV, Pichugin MY, Gruzdeva MA, Pavlov DS (2007) Systematics and biology of the East Siberian char Salvelinus leucomaenis. J Ichthyol 47:53–66. doi: 10.1134/S0032945207010067 CrossRefGoogle Scholar
  71. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134. doi: 10.2307/1308256 CrossRefGoogle Scholar
  72. Shibata K (1938) A discussion on the movement pattern of white-spotted charr (in Japanese). Sakemasu-iho 38:78–83Google Scholar
  73. Shimoda K, Nakano S, Yamamoto S (2002) Landlocking of anadromous white-spotted charr Salvelinus leucomaenis by damming (in Japanese with English summary). Jpn J Ichthyol 49:25–32 Google Scholar
  74. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264. doi: 10.1073/pnas.0403809101 PubMedCrossRefGoogle Scholar
  75. Tago Y (1999) Annual changes in the range of upstream migration and catch of adult masu salmon in the Jinzu and Shou Rivers (in Japanese with English summary). Suisanzoushoku 47:115–118Google Scholar
  76. Takahashi G, Kuwahara T, Yamanaka M (2005) Dams in the Shiretoko Peninsula—issues in river management and environmental conservation (in Japanese with English summary). Jpn J Conserv Ecol 10:139–149Google Scholar
  77. Takami T, Murakami Y, Mori M (1996) Growth and feeding habits of anadromous white-spotted charr (Salvelinus leucomaenis) in southwestern Hokkaido, Japan. Sci Rep Hokkaido Fish Hatch 50:37–44Google Scholar
  78. Takami T, Yoshihara T, Miyakoshi Y, Kuwabara R (2002) Replacement of white-spotted charr Salvelinus leucomaenis by brown trout Salmo trutta in a branch of the Chitose River, Hokkaido (in Japanese with English summary). Nippon Suisan Gakkai Shi 38:24–28Google Scholar
  79. Takeda K (1975) On the char Salvelinus leucomaenis with atypical color patterns in Lake Biwa tributaries (in Japanese with English summary). Jpn J Ichthyol 21:198–202.
  80. Takeda K, Onodera S, Yoshiyasu K (1978) Salvelinus leucomaenis with atypical color patterns, collected in the Mogami and Nikko River systems, Yamagata prefecture (in Japanese with English summary). Jpn J Ichthyol 25:58–64.
  81. Tamate T, Hayajiri M (2008) The relationship between the number of main dams and the coastal catch of masu salmon (Oncorhynchus masou) in Hokkaido: implications for river ecosystem conservation (in Japanese). Water Sci 52(2):72–84Google Scholar
  82. Tamate T, Yamamoto S (2004) Alternative life histories in salmonid fishes. In: Maekawa K (ed) Ecology and evolution of salmonids (in Japanese). Bunichi Sougou Shuppan, Tokyo, pp 43–63Google Scholar
  83. Thériault V, Bernatchez L, Dodson JJ (2007) Mating system and individual reproductive success of sympatric anadromous and resident brook charr, Salvelinus fontinalis, under natural conditions. Behav Ecol Sociobiol 62:51–65. doi: 10.1007/s00265-007-0437-8 CrossRefGoogle Scholar
  84. Thorpe JE (1989) Developmental variation in salmonid populations. J Fish Biol 35(Suppl A):295–303. doi: 10.1111/j.1095-8649.1989.tb02978.x Google Scholar
  85. Thorpe JE (1994) An alternative view of smolting in salmonids. Aquaculture 121:105–113. doi: 10.1016/0044-8486(94)90012-4 CrossRefGoogle Scholar
  86. Tsuboi J (2007) Conserving native populations of white-spotted charr, red-spotted masu salmon, and masu salmon (in Japanese). Newsletter of Yamanashi Fisheries Technology Center 46:1–2.
  87. Vincenzi S, Crivelli AJ, Jesensek D, De Leo GA (2008) The role of density-dependent individual growth in the persistence of freshwater salmonid populations. Oecologia 156:523–534. doi: 10.1007/s00442-008-1012-3 PubMedCrossRefGoogle Scholar
  88. Yamamoto S, Morita K (2002) Interpopulation comparison of size and age at smolting of white-spotted charr, Salvelinus leucomaenis. Ecol Freshw Fish 11:281–284. doi: 10.1034/j.1600-0633.2002.00021.x CrossRefGoogle Scholar
  89. Yamamoto S, Morita K (2003) Effect of habitat fragmentation on fish populations. In: Nakazato A (ed) Sex and behavioral ecology of aquatic bioresources (in Japanese). Kouseisha Kouseikaku, Tokyo, pp 114–124Google Scholar
  90. Yamamoto S, Nakano S (1996) Growth and development of a bimodal length–frequency distribution during smolting in a wild population of white-spotted charr in northern Japan. J Fish Biol 48:68–79Google Scholar
  91. Yamamoto S, Morita K, Goto A (1999a) Geographic variations in life history characteristics of white-spotted charr (Salvelinus leucomaenis). Can J Zool 77:871–878. doi: 10.1139/cjz-77-6-871 CrossRefGoogle Scholar
  92. Yamamoto S, Morita K, Goto A (1999b) Marine growth and survival of white-spotted charr, Salvelinus leucomaenis, in relation to smolt size. Ichthyol Res 46:85–92. doi: 10.1007/BF02674951 CrossRefGoogle Scholar
  93. Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5:529–538. doi: 10.1023/B:COGE.0000041029.38961.a0 CrossRefGoogle Scholar
  94. Yamamoto S, Maekawa K, Tamate T, Koizumi I, Hasegawa K, Kubota H (2006) Genetic evaluation of translocation in artificially isolated populations of white-spotted charr (Salvelinus leucomaenis). Fish Res 78:352–358. doi: 10.1016/j.fishres.2005.11.011 CrossRefGoogle Scholar
  95. Yamashiro S (1963) Life form of amemasu (Salvelinus leucomaenis) in eastern region of Hokkaido with special reference to the growth of body (in Japanese with English summary). J Hokkaido Gakugei Univ 2B 14:37–42Google Scholar

Copyright information

© The Ecological Society of Japan 2009

Authors and Affiliations

  • Kentaro Morita
    • 1
    Email author
  • Shoko H. Morita
    • 1
  • Shoichiro Yamamoto
    • 2
  1. 1.Hokkaido National Fisheries Research InstituteFisheries Research AgencyKushiroJapan
  2. 2.National Research Institute of Fisheries ScienceFisheries Research AgencyNikkoJapan

Personalised recommendations