Skip to main content
Log in

Viability selection on early body mass and the effect of female body size on fecundity: a study on the leaf-eared mouse Phyllotis darwini

  • Original Article
  • Published:
Ecological Research

Abstract

Viability selection and fecundity of size-related traits has been demonstrated to be strong in vertebrates. In small mammals, both offspring and adult size are important for viability and fecundity, respectively. We studied the role of early phenotypic selection on size attributes and female fecundity in the leaf-eared mouse (Phyllotis darwini). Our results support that larger females produce more offspring, and since the likelihood of attaining adulthood is similar for different sizes of the females, those larger females also produce more offspring that attain sexual maturity. From the offspring perspective, larger pups at birth have significantly more probability of attaining sexual maturity. However, weaning mass and growth rate did not show any differential survival. Our study suggests that early selection could be important and could prevent further episodes of selection by early culling of the distribution of sizes, and that “effective” fecundity is strongly dependent on the size of the female.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bacigalupe LD, Bozinovic F (2002) Design, limitations and sustained metabolic rate: lessons from small mammals. J Exp Biol 205:2963–2970

    PubMed  Google Scholar 

  • Blumberg MS, Sokoloff G (1997) Dynamics of brown fat thermogenesis in week-old rats: evidence of relative stability during moderate cold exposure. Physiol Zool 70:324–330

    PubMed  CAS  Google Scholar 

  • Browne MW (1984) Asymptotically distribution-free methods for the analysis of covariance structures. Br J Math Stat Psychol 37:62–83

    PubMed  Google Scholar 

  • Du W, Xiang J, Shine R (2005) Does body volume constrain reproductive output in lizards? Biol Lett 1:98–100. doi:10.1098/rsbl.2004.0268

    Article  PubMed  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Monographs in population biology. Princeton University Press, New Jersey

    Google Scholar 

  • Fleming TH, Rausher RJ (1978) On the evolution of litter size in Peromyscus maniculatus. Evolution Int J Org Evol 32:45–55. doi:10.2307/2407409

    Google Scholar 

  • Fournier F, Thomas DW, Garland T (1999) A test of two hypotheses explaining the seasonality of reproduction in temperate mammals. Funct Ecol 13:523–529. doi:10.1046/j.1365-2435.1999.00342.x

    Article  Google Scholar 

  • Fox CW (2000) Natural selection on seed-beetle egg size in nature and the laboratory: variation among environments. Ecology 81:3029–3035

    Article  Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369. doi:10.1146/annurev.ento.45.1.341

    Article  PubMed  CAS  Google Scholar 

  • Hayes JP, O’Connor CSO (1999) Natural selection on thermogenic capacity of high-altitude deer mice. Evolution Int J Org Evol 53:1280–1287. doi:10.2307/2640830

    Google Scholar 

  • Janzen FJ (1993) An experimental analysis of natural selection on body size of hatchling turtles. Ecology 74:332–341. doi:10.2307/1939296

    Article  Google Scholar 

  • Janzen FJ, Stern HS (1998) Logistic regression for empirical studies of multivariate selection. Evolution Int J Org Evol 52:1564–1571. doi:10.2307/2411330

    Google Scholar 

  • Kenagy GJ, Barnes BM (1988) Seasonal reproductive patterns in four coexisting rodents species from the Cascade Mountains, Washington. J Mammal 69:274–292. doi:10.2307/1381378

    Article  Google Scholar 

  • Kenagy GJ, Masman D, Sharbaugh SM, Nagy KA (1990) Energy expenditure during lactation in relation to litter size in free-living golden-mantled ground squirrels. J Anim Ecol 59:73–88. doi:10.2307/5159

    Article  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261. doi:10.1086/319193

    Article  PubMed  CAS  Google Scholar 

  • Koskela E, Mappes T, Ylonen H (1999) Experimental manipulation of breeding density and litter size: effects on reproductive success in the bank vole. J Anim Ecol 68:513–521. doi:10.1046/j.1365-2656.1999.00308.x

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Manly BF (1998) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Mappes T, Koskela E (2004) Genetic basis of the trade-off between offspring number and quality in the bank vole. Evolution Int J Org Evol 58:645–650

    Google Scholar 

  • McAdam AG, Boutin S (2003) Variation in viability selection among cohorts of juvenile red squirrels (Tamiasciurus hudsonicus). Evolution Int J Org Evol 57:1689–1697

    Google Scholar 

  • Millar JS (1978) Energetics of reproduction in Peromyscus leucopus: the cost of lactation. Ecology 59:1055–1061. doi:10.2307/1938558

    Article  Google Scholar 

  • Morris DW (1985) Natural selection for reproductive optima. Oikos 45:290–293. doi:10.2307/3565719

    Article  Google Scholar 

  • Morris DW (1996) State-dependent life histories, Mountford’s hypothesis and the evolution of brood size. J Anim Ecol 65:43–51. doi:10.2307/5698

    Article  Google Scholar 

  • Myers P, Master LL (1983) Reproduction by Peromyscus maniculatus: size and compromise. J Mammal 64:1–18. doi:10.2307/1380746

    Article  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Bozinovic F (2003) Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution Int J Org Evol 57:1679–1688

    Google Scholar 

  • Nespolo RF, Bustamante DM, Bacigalupe LD, Bozinovic F (2005) Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini. Evolution Int J Org Evol 59:1829–1837

    CAS  Google Scholar 

  • Oksanen TA, Jonsson P, Koskela E, Mappes T (2001) Optimal allocation of reproductive effort: manipulation of offspring number and size in the bank vole. Proc R Soc Lond B Biol Sci 268:661–666. doi:10.1098/rspb.2000.1409

    Article  CAS  Google Scholar 

  • Oksanen TA, Koskela E, Mappes T (2002) Hormonal manipulation of offspring number: maternal effort and reproductive costs. Evolution Int J Org Evol 56:1530–1537

    CAS  Google Scholar 

  • Oksanen TA, Jokinen I, Koskela E, Mappes T, Vilpas H (2003) Manipulation of offspring number and size: benefits of large body size at birth depend upon the rearing environment. J Anim Ecol 72:321–330. doi:10.1046/j.1365-2656.2003.00703.x

    Article  Google Scholar 

  • Oksanen TA, Koivula M, Koskela E, Mappes T (2007) The cost of reproduction induced by body size at birth and breeding density. Evolution Int J Org Evol 61:2822–2831. doi:10.1111/j.1558-5646.2007.00245.x

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rogowitz GL (1998) Limits to milk flow and energy allocation during lactation of the hispid cotton rat (Sigmodon hispidus). Physiol Zool 71:312–320

    PubMed  CAS  Google Scholar 

  • Rogowitz GL, McClure PA (1995) Energy export and offspring growth during lactation in cotton rats (Sigmodon hispidus). Funct Ecol 9:143–150. doi:10.2307/2390558

    Article  Google Scholar 

  • Ruusila V, Ermala A, Hyvarinen H (2000) Costs of reproduction in introduced female Canadian beavers (Castor canadensis). J Zool (Lond) 252:79–82. doi:10.1111/j.1469-7998.2000.tb00822.x

    Article  Google Scholar 

  • Schluter D (1988) Estimating the form of natural selection on a quantitative trait. Evolution Int J Org Evol 42:849–861. doi:10.2307/2408904

    Google Scholar 

  • Sheldon BC, Kruuk LEB, Merila J (2003) Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution Int J Org Evol 57:406–420

    CAS  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Sikes RS (1995) Costs of lactation and optimal litter size in northern grasshopper mice (Onychomys leucogaster). J Mammal 76:348–357. doi:10.2307/1382346

    Article  Google Scholar 

  • Sikes RS (1998) Tradeoffs between quality of offspring and litter size: differences do not persist into adulthood. J Mammal 79:1143–1151. doi:10.2307/1383005

    Article  Google Scholar 

  • Sinervo B (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia 83:228–237. doi:10.1007/BF00317757

    Article  Google Scholar 

  • Sinervo B, Licht P (1991) Proximate constraints on the evolution of egg size, number and total clutch mass in lizards. Science 191:1300–1302. doi:10.1126/science.252.5010.1300

    Article  Google Scholar 

  • Steppan SJ (1998) Phylogenetic relationships and species limits within Phyllotis (Rodentia: Sigmodontinae): concordance between Mtdna sequence and morphology. J Mammal 79:573–593. doi:10.2307/1382988

    Article  Google Scholar 

  • Svensson E, Sinervo B (2000) Experimental excursions on adaptive landscapes: density-dependent selection on egg size. Evolution Int J Org Evol 54:1396–1403

    CAS  Google Scholar 

  • Webb DR, Porter WP, McClure PA (1990) Development of insulation in juvenile rodents: functional compromise in insulation. Funct Ecol 4:251–256. doi:10.2307/2389344

    Article  Google Scholar 

  • Young KV, Brodie ED, Brodie EDI (2004) How the horned lizard got its horns. Science 304:65. doi:10.1126/science.1094790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a FONDECYT grant 3030032. We thank Francisco Bozinovic for laboratory facilities and critical revision of the first draft and Diego Bustamante for logistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. Nespolo.

About this article

Cite this article

Nespolo, R.F., Bacigalupe, L.D. Viability selection on early body mass and the effect of female body size on fecundity: a study on the leaf-eared mouse Phyllotis darwini . Ecol Res 24, 997–1002 (2009). https://doi.org/10.1007/s11284-008-0570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-008-0570-5

Keywords

Navigation