Skip to main content
Log in

Spatial and temporal population differences in male density and condition in the American rubyspot, Hetaerina americana (Insecta: Calopterygidae)

  • Original Article
  • Published:
Ecological Research

Abstract

Increased resource availability should favor higher animal density. It may also affect sex ratio, the male condition, and mating competition over access to females, although the direction of these variables is not straightforward to predict. Using a non-experimental approach, we carried out preliminary research using the territorial American rubyspot (Hetaerina americana) by comparing two spatially separated populations and the same population in two different seasons (each comparison with varying population densities). We first compared the sex ratio by counting males (using two categories, territorial and non-territorial) and females; relative foraging time (as an indicator of how much feeding resources each site provides); wing spot size (a sexual ornament), body size and immune melanization response (these two variables were used to assess male condition); and fighting time and contest number (to assess competition). For the seasonal comparison we used a third population in which we only compared male spot size and two indicators of condition and immune response, phenoloxidase (PO) and nitric oxide (NO) activity. The high-density population had higher values of non-territorial males (but similar sex ratio), relative foraging time, contest time and number, wing spot (but similar body size) and melanization response than the low-density population. According to season, at high density, males had higher values of wing spots, PO, and NO. Our results suggest that in a population where animals have more dietary resources, males reach a better condition despite the competition being more intense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Andersson M, Simmons LW (2006) Sexual selection and mate choice. Trends Ecol Evol 21:296–302

    Article  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  PubMed  CAS  Google Scholar 

  • Choquenot D (1991) Density-dependent growth, body condition, and demography in feral donkeys: testing the food hypothesis. Ecology 72:805–813

    Article  Google Scholar 

  • Claes A, Göran N (1983) Reproductive tactics in an island population of Adders, Vipera verus (L.), with a fluctuating food resource. Amphib Reptil 4:63–79

    Article  Google Scholar 

  • Contreras-Garduño J, Canales-Lazcano J, Córdoba-Aguilar A (2006) Wing pigmentation, immune ability and fat reserves in males of the rubyspot damselfly Hetaerina americana. J Ethol 24:165–173

    Article  Google Scholar 

  • Contreras-Garduño J, Buzatto BA, Abundis L, Nájera-Cordero K, Córdoba-Aguilar A (2007a) Wing colour properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113:944–952

    Google Scholar 

  • Contreras-Garduño J, Lanz Mendoza H, Córdoba-Aguilar A (2007b) The expression of a sexually selected trait correlates with different immune response components and survival ability in males of the damselfly Hetaerina americana. J Insect Physiol 53:612–621

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Garduño J, Buzatto B, Serrano-Meneses MA, Nájera-Cordero K, Cordoba-Aguilar A (2008) The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behav Ecol (in press)

  • Corbet PS (1999) Dragonflies. Behavior and ecology of Odonata. Harley Books, Colchester

    Google Scholar 

  • Córdoba-Aguilar A, Cordero Rivera A (2005) Evolution and ecology of Calopterygidae (Zygoptera: Odonata): status of knowledge and research perspectives. Neot Entomol 34:861–879

    Google Scholar 

  • Córdoba-Aguilar A, Contreras-Garduño J, Peralta-Vázquez H, Luna-González A, Campa-Córdova AI, Ascencio F (2006) Sexual comparisons in immune ability, parasite intensity and survival in two damselfly species. J Insect Physiol 52:861–869

    Article  PubMed  CAS  Google Scholar 

  • Córdoba-Aguilar A, Contreras-Garduño J (2006) Differences in immune ability in forest habitats of varying quality: dragonflies as study models. In: Cordero A (ed) Forests and dragonflies. Pensoft Publishers, Sofia, pp 269–278

    Google Scholar 

  • Cotton S, Fowler K, Pomiankowski A (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc R Soc Lond B 271:771–783

    Article  Google Scholar 

  • Davies SA (2000) Nitric oxide signalling in insects. Insect Biochem Mol Biol 30:1123–1138

    Article  PubMed  CAS  Google Scholar 

  • Eason PK, Switzer PV (2004) The costs of neighbours for a territorial dragonfly, Perithemis tenera. Ethology 110:37–49

    Article  Google Scholar 

  • Foley E, O’Farrell PH (2003) Nitric oxide contributes to induction of innate immune response to Gram-negative bacteria in Drosophila. Gen Dev 17:115–125

    Article  CAS  Google Scholar 

  • Gillespie JP, Kanost MR, Trenzeck T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  • Grether GF (1996a) Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution 50:1939–1948

    Article  Google Scholar 

  • Grether GF (1996b) Intrasexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution 50:1949–1957

    Article  Google Scholar 

  • Grether GF, Grey RM (1996) Novel cost of a sexually selected trait in the rubyspot damselfly Hetaerina americana: conspicuousness to prey. Behav Ecol 7:465–473

    Article  Google Scholar 

  • Herrera-Ortíz A, Lanz-Mendoza H, Martínez-Bernetche J, Hernández-Martínez S, Villareal-Treviño C, Aguilar-Marcelino L, Rodríguez MH (2004) Plasmodium berghei ookinetes induce nitric oxide production in Anopheles pseudopunctipennis midguts cultured in vitro. Insect Biochem Mol Biol 34:8

    Google Scholar 

  • Hogstedt G (1981) Effect of additional food on reproductive success in the magpie (Pica pica). J Anim Ecol 50:219–229

    Article  Google Scholar 

  • Iwasa Y, Pomiankowski A, Nee S (1991) The evolution of costly mate preference. II. The handicap principle. Evolution 45:1431–1442

    Article  Google Scholar 

  • Iwasa Y, Pomiankowski A (1994) The evolution of male preference for multiple handicaps. Evolution 48:853–867

    Article  Google Scholar 

  • Kokko H, Sutherland WJ (1998) Optimal floating and queuing strategies: consequences for density dependence and habitat loss. Am Nat 152:354–366

    Article  PubMed  CAS  Google Scholar 

  • Kokko H, Sutherland WJ, Johnstone R (2001) The logic of territory choice: implications for conservation and source-sink dynamics. Am Nat 157:459–463

    Google Scholar 

  • Kotiaho JS (2001) Cost of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol Rev 76:365–376

    Article  PubMed  CAS  Google Scholar 

  • López-Sepulcre A, Kokko H (2005) Territorial defense, territory size, and population regulation. Am Nat 166:317–329

    Article  PubMed  Google Scholar 

  • Leclerc V, Reichhart JM (2004) The immune response of Drosophila melanogaster. Immunol Rev 198:59–71

    Article  PubMed  CAS  Google Scholar 

  • Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95:5700–5705

    Article  PubMed  CAS  Google Scholar 

  • Marden JH, Cobb JR (2004) Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim Behav 68:857–865

    Article  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Moore FR, Young W (1991) Evidence of food-based competition among passerine migrants during stopovers. Behav Ecol Sociobiol 28:85–90

    Article  Google Scholar 

  • Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51:363–381

    Article  PubMed  Google Scholar 

  • Nappi AJ, Christensen BM (2005) Melanogenesis and immune-associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E, Frey F, Carton Y (2000) Nitric oxide involvement in Drosophila immunity. Nitric Oxide 4:423–430

    Article  PubMed  CAS  Google Scholar 

  • Narayanan K (2004) Insect defence: its impact on microbial control of insect pests. Curr Sci 86:800–814

    CAS  Google Scholar 

  • Penn I, Weissing FJ (2000) Optimal floating and queuing strategies: the logic of territory choice. Am Nat 155:512–526

    Article  Google Scholar 

  • Raihani G, Serrano-Meneses MA, Córdoba-Aguilar A (2008) Male mating tactics in the American rubyspot damselfly: territoriality, nonterritoriality and switching behaviour. Anim Behav (in press)

  • Rantala MJ, Koskimäki J, Taskinen J, Tynkkynen K, Suhonen J (2000) Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc R Soc Lond B 267:2453–2457

    Article  CAS  Google Scholar 

  • Regulski M, Stasiv Y, Tully T, Enikolopov G (2004) Essential function of nitric oxide synthase in Drosophila. Curr Biol 14:R881–R882

    Article  PubMed  CAS  Google Scholar 

  • Rivero A (2006) Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol 22:352–352

    Article  CAS  Google Scholar 

  • Serrano-Meneses MA, Córdoba-Aguilar A, Méndez V, Layen SJ, Székely T (2007) Sexual size dimorphism in the American rubyspot: male body size predicts male competition and mating success. Anim Behav 136:1365–1377

    Google Scholar 

  • Shochat E, Abramsky Z, Pinshow B, Whitehouse MEA (2002) Density-dependent habitat selection in migratory passerines during stopovers: what causes the deviation from IFD? Evol Ecol 16:469–488

    Article  Google Scholar 

  • Siva-Jothy MT (2000) A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc R Soc Lond B 267:2523–2527

    Article  CAS  Google Scholar 

  • Skogland T (1985) The effects of density-dependent resource limitation on the demography of wild reindeer. J Anim Ecol 54:359–374

    Article  Google Scholar 

  • Svensson EI, Eroukhmanoff F, Friberg M (2006) Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution 60:1242–1253

    PubMed  Google Scholar 

  • Söderhäll K, Häll L (1984) Lipopolysaccharide-induced activation of prophenoloxidase activity system in crayfish hemocyte. Biochim Biophys Acta 109:709–713

    Google Scholar 

  • Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48

    Article  Google Scholar 

  • Taylor PD, Merriam G (1996) Habitat fragmentation and parasitism of a forest damselfly. Land Ecol 11:181–189

    Article  Google Scholar 

  • Tynkkynen K, Rantala MJ, Suhonen J (2004) Intersexual aggression and character displacement in the damselfly Calopteryx splendens. J Evol Biol 17:759–767

    Article  PubMed  CAS  Google Scholar 

  • Tzou P, De Gregorio E, Lemaitre B (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 5:102–110

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A (1975) Mate selection: a selection for a handicap. J Theor Biol 53:205–214

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A, Zahavi A (1997) The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, New York

    Google Scholar 

  • Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgments

We would like to thank Norma E. Martínez Lendech and Iván S. Sánchez Martínez for their help in the field, the Comisariado Ejidal de Alpuyeca for the facilities to collect inside Palo Bolero. This research was funded by PAPIIT (projects IN211506 and IN230603; Universidad Nacional Autónoma de México). We also thank Raúl I. Martínez Becerril and Julie Irons for their help in the preparation of this manuscript and Gina Raihani for correcting our English grammar. When using our study animals we adhered to the Mexican ethical standards for the use of animals in research. Finally, we thank Masakado Kawata for his enriching and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Córdoba-Aguilar.

About this article

Cite this article

Contreras-Garduño, J., Canales-Lazcano, J., Jiménez-Cortés, J.G. et al. Spatial and temporal population differences in male density and condition in the American rubyspot, Hetaerina americana (Insecta: Calopterygidae). Ecol Res 24, 21–29 (2009). https://doi.org/10.1007/s11284-008-0476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-008-0476-2

Keywords

Navigation