Skip to main content

Ecology of ligninolytic fungi associated with leaf litter decomposition

Abstract

Advances in our understanding of the decomposition processes in forest ecosystems over the past three decades have demonstrated the importance of lignin as a regulating factor in the decomposition of leaf litter. Consequently, increasingly more attention is being focused on the ecology of fungi associated with lignin decomposition. The aim of this review is to provide a critical summary of the ecology of ligninolytic fungi inhabiting leaf litter and forest floor materials. The review focuses on the following aspects of ligninolytic fungi: the taxonomic and functional diversity of ligninolytic fungi, the outcomes of interactions between ligninolytic fungi and other organisms, the activity and abundance of ligninolytic fungi measured by the production of bleached leaves and humus, the activity of ligninolytic enzymes in soil environments, the substratum and seral succession, spatial and temporal patterns in both mycelial abundance and species distribution, and the effect of environmental factors such as nitrogen deposition and global environmental changes on ligninolytic fungi. This review integrates the ecology, diversity, and activity of ligninolytic fungi into the context of an ecosystem in order to provide an understanding of the roles of ligninolytic fungi in decomposition processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Addison JA, Trofymow JA, Marshall VG (2003) Functional role of collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl Soil Ecol 24:247–261

    Google Scholar 

  2. Allison SD, Vitousek PM (2004) Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–296

    Google Scholar 

  3. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–62

    CAS  Google Scholar 

  4. Azhar ES, Verhe R, Proot M, Sandra P, Verstraete W (1986a) Binding of nitrite–N on polyphenols during nitrification. Plant Soil 94:369–382

    CAS  Google Scholar 

  5. Azhar ES, Vandenabeele J, Verstraete W (1986b) Nitrification and organic nitrogen formation in soils. Plant Soil 94:383–399

    Google Scholar 

  6. Bååth E, Söderström B (1977) Mycelial lengths and fungal biomasses in some Swedish coniferous forest soils, with special reference to a pine forest in central Sweden. Swedish Coniferous Forest Project Technical Report 13, Uppsala

  7. Baker CJ, Bateman DF (1978) Cutin degradation by plant pathogenic fungi. Phytopathology 68:1577–1584

    Google Scholar 

  8. Baldrian P, Snajdr J (2006) Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme Microb Technol 39:1023–1029

    CAS  Google Scholar 

  9. Baldrian P, Snajdr J, Valásková V (2006) Fungal ligninolytic enzymes in the forest soil environment: occurrence, distribution and role in soil organic matter transformation. In: Meyer W, Pearce C (eds) Proc 8th Int Mycolog Congr. Cairns, Australia, pp 135–138

  10. Barder MJ, Crawford DL (1981) Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces. Can J Microbiol 27:859–863

    PubMed  CAS  Google Scholar 

  11. Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559

    CAS  Google Scholar 

  12. Berg B (1991) FDA-active fungal mycelium and lignin concentrations in some needle and leaf litter types. Scand J For Res 6:451–462

    Google Scholar 

  13. Berg B, McClaugherty C (2003) Plant litter, decomposition, humus formation, carbon sequestration. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    CAS  Google Scholar 

  15. Berg B, Wessén B (1984) Changes in organic-chemical components and ingrowth of fungal mycelium in decomposing birch leaf litter as compared to pine needles. Pedobiologia 26:285–298

    Google Scholar 

  16. Berg B, Berg M, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux M, Gallardo A, Escudero A, Krantz W, Madeira M, Mälkönen E, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Virzo de Santo A (1993) Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20:127–153

    Google Scholar 

  17. Berg B, McClaugherty C, Johansson MB (1997) Chemical changes in decomposing litter can be systemized with respect to the initial chemical composition of the litter. Swedish University of Agricultural Sciences report 74, Uppsala

  18. Bissett J, Parkinson D (1980) Long-term effects of fire on the composition and activity of the soil microflora of a subalpine, coniferous forest. Can J Bot 58:1704–1721

    Google Scholar 

  19. Black RLB, Dix NJ (1976) Utilization of ferulic acid by microfungi from litter and soil. Trans Br Mycol Soc 66:313–317

    Article  Google Scholar 

  20. Blondeau R (1989) Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 55:1282–1285

    PubMed  CAS  Google Scholar 

  21. Boddy L (1992) Development and function of fungal communities in decomposing wood. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Dekker, New York, pp 749–782

    Google Scholar 

  22. Brown JC (1958a) Fungal mycelium in dune soils estimated by a modified impression slide technique. Trans Br Mycol Soc 41:81–88

    Google Scholar 

  23. Brown JC (1958b) Soil fungi of some British sand dunes in relation to soil type and succession. J Ecol 46:641–664

    Google Scholar 

  24. Brunner I, Brunner F, Laursen GA (1992) Characterization and comparison of macrofungal communities in an Alnus tenuifolia and an Alnus crispa forest in Alaska. Can J Bot 70:1247–1258

    Google Scholar 

  25. Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    PubMed  CAS  Article  Google Scholar 

  26. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  27. Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    PubMed  Google Scholar 

  28. Carreiro MM, Koske RE (1992a) The effect of temperature and substratum on competition among three species of forest litter microfungi. Mycol Res 96:19–24

    Google Scholar 

  29. Carreiro MM, Koske RE (1992b) Effect of temperature on decomposition and development of microfungal communities in leaf litter microcosms. Can J Bot 70:2177–2183

    Google Scholar 

  30. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Google Scholar 

  31. Coelho RRR, Sacramento DR, Linhares LF (1997) Amino sugars in fungal melanins and soil humic acids. Eur J Soil Sci 48:425–429

    CAS  Google Scholar 

  32. Cooke WMB, Lawrence DB (1959) Soil mould fungi isolated from recently glaciated soils in south-eastern Alaska. J Ecol 47:529–549

    Google Scholar 

  33. Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, London

    Google Scholar 

  34. Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell, Oxford

    Google Scholar 

  35. Countess RE, Kendrick B, Trofymow JA (1998) Macrofungal diversity in successional Douglas-fir forests. Northwest Sci 72:110–112

    Google Scholar 

  36. Cox P, Wilkinson SP, Anderson JM (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol Fertil Soils 33:246–251

    CAS  Google Scholar 

  37. Criquet S, Farnet AM, Tagger S, Le Petit J (2000) Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biol Biochem 32:1505–1513

    CAS  Google Scholar 

  38. Criquet S, Tagger S, Vogt G, Le Petit J (2002) Endoglucanase and ß-glycosidase activities in an evergreen oak litter: annual variation and regulating factors. Soil Biol Biochem 34:1111–1120

    CAS  Google Scholar 

  39. Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Le Petit J (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Env Microbiol 66:925–929

    CAS  Google Scholar 

  40. DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004a) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138

    CAS  Google Scholar 

  41. DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004b) Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol Biochem 36:965–971

    CAS  Google Scholar 

  42. de Jong E, Beuling EE, van der Zwan RP, de Bont JAM (1990) Degradation of veratryl alcohol by Penicillium simplicissimum. Appl Microbiol Biotechnol 34:420–425

    Google Scholar 

  43. Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development: with specific reference to mycorrhizal species. Trans Br Mycol Soc 87:163–171

    Google Scholar 

  44. Di Nardo C, Cinquegrana A, Papa S, Fuggi A, Fioretto A (2004) Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biol Biochem 36:1539–1544

    CAS  Google Scholar 

  45. Dix NJ (1984) Minimum water potentials for growth of some litter-decomposing agarics and other basidiomycetes. Trans Br Mycol Soc 83:152–153

    Google Scholar 

  46. Dix NJ (1985) Changes in relationship between water content and water potential after decay and its significance for fungal succession. Trans Br Mycol Soc 85:649–653

    Article  Google Scholar 

  47. Dix NJ, Frankland JC (1987) Tolerance of litter-decomposing agarics to water stress in relation to habitat. Trans Br Mycol Soc 88:127–129

    Google Scholar 

  48. Dix NJ, Simpson AP (1984) Decay of leaf litter by Collybia peronata. Trans Br Mycol Soc 83:37–41

    Google Scholar 

  49. Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Google Scholar 

  50. Donnelly PK, Entry JA, Crawford DL, Cromack K Jr (1990) Cellulose and lignin degradation in forest soils: response to moisture, temperature, and acidity. Microb Ecol 20:289–295

    CAS  Google Scholar 

  51. Dowson CG, Rayner ADM, Boddy L (1989) Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. New Phytol 111:699–705

    Google Scholar 

  52. Durall DM, Jones MD, Lewis KJ (2005) Effects of forest management on fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. Taylor & Francis, New York, pp 833–855

    Google Scholar 

  53. Dursun S, Frankland JC, Boddy L, Ineson P (1996a) Sulphite and pH effects on CO2 evolution by fungi growing on decomposing coniferous needles. New Phytol 134:155–166

    CAS  Google Scholar 

  54. Dursun S, Ineson P, Frankland JC, Boddy L (1996b) Sulphur dioxide effects on fungi growing on leaf litter and agar media. New Phytol 134:167–176

    CAS  Google Scholar 

  55. Edmonds RL (1978) Decomposition and nutrient release in Douglas-fir needle litter in relation to stand development. Can J For Res 9:132–140

    Google Scholar 

  56. Entry JA, Donnelly PK, Cromack Jr K (1991) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fertil Soils 11:75–78

    CAS  Google Scholar 

  57. Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  58. Eveling DW, Wilson RN, Gillespie ES, Bataille A (1990) Environmental effects on sporocarp counts over fourteen years in a forest area. Mycol Res 94:998–1002

    Google Scholar 

  59. Falcón MA, Rodríguez A, Carnicero A, Regalado V, Perestelo F, Milstein O, de la Fuente G (1995) Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem 27:121–126

    Google Scholar 

  60. Farnet AM, Criquet S, Cigna M, Gil G, Ferré E (2004) Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzyme Microb Technol 34:549–554

    CAS  Google Scholar 

  61. Ferris R, Peace AJ, Newton AC (2000) Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten.) plantations in England: relationships with site factors and stand structure. For Ecol Manage 131:255–267

    Google Scholar 

  62. Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000) Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biol Biochem 32:1847–1855

    CAS  Google Scholar 

  63. Fioretto A, Papa S, Sorrentino G, Fuggi A (2001) Decomposition of Cistus incanus leaf litter in a Mediterranean maquis ecosystem: mass loss, microbial enzyme activities and nutrient changes. Soil Biol Biochem 33:311–321

    CAS  Google Scholar 

  64. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  65. Frankland JC (1992) Mechanisms in fungal succession. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Dekker, New York, pp 383–401

    Google Scholar 

  66. Frankland JC (1998) Fungal succession – unravelling the unpredictable. Mycol Res 102:1–15

    Google Scholar 

  67. Frankland JC, Bailey AD, Gray TRG, Holland AA (1981) Development of an immunological technique for estimating mycelial biomass of Mycena galopus in leaf litter. Soil Biol Biochem 13:87–92

    Google Scholar 

  68. Frankland JC, Hedger JN, Swift MJ (1982) Decomposer basidiomycetes, their biology and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  69. Frankland JC, Poskitt JM, Howard DM (1995) Spatial development of populations of a decomposer fungus, Mycena galopus. Can J Bot 73[Suppl1]:S1399–S1406

    Google Scholar 

  70. Fujita H (1989) Succession of higher fungi in a forest of Pinus densiflora. Trans Mycol Soc Jpn 30:125–147

    Google Scholar 

  71. Fukiharu T, Kato M (1997) An analysis on the spatial distribution patterns of basidiocarps of Agaricales in a Castanopsis-dominated forest in Kyoto. Mycoscience 38:37–44

    Google Scholar 

  72. Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229

    PubMed  CAS  Google Scholar 

  73. Ghosh A, Frankland JC, Thurston CF, Robinson CH (2003) Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycol Res 107:996–1008

    PubMed  CAS  Google Scholar 

  74. Gourbière F (1983) Pourriture blanche de la litière d’Abies alba Mill. II. Répartition spatio-temporelle et activité annuelle des Basidiomycètes du genre Collybia. Rev Ecol Biol Sol 20:461–474

    Google Scholar 

  75. Gramss G, Günther T, Fritsche W (1998) Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 102:67–72

    CAS  Google Scholar 

  76. Grant WD (1976) Microbial degradation of condensed tannins. Science 193:1137–1138

    PubMed  CAS  Google Scholar 

  77. Günther T, Perner B, Gramss G (1998) Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). J Basic Microbiol 38:197–206

    Google Scholar 

  78. Hanlon RDG, Anderson JM (1979) The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecology 38:93–99

    Google Scholar 

  79. Hansen PA, Tyler G (1992) Statistical evaluation of tree species affinity and soil preference of the macrofungal flora in south Swedish beech, oak and hornbeam forests. Crypt Bot 2:355–361

    Google Scholar 

  80. Hao J, Tian X, Song F, He X, Zhang Z, Zhang P (2006) Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukaryot Microbiol 53:193–198

    PubMed  CAS  Google Scholar 

  81. Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Y, Tian X (2007) Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. J Ind Microbiol Biotechnol 34:233–240

    PubMed  CAS  Google Scholar 

  82. Harris GCM (1945) Chemical changes in beech litter due to infection by Marasmius peronatus (Bolt.) Fr. Ann Appl Biol 32:38–39

    CAS  Google Scholar 

  83. Hassall M, Parkinson D, Visser S (1986) Effects of the collembolan Onychiurus subtenuis on decomposition of Populus tremuloides leaf litter. Pedobiologia 29:219–225

    Google Scholar 

  84. Hattaka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol. 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

  85. Hering TF (1966) The terricolous higher fungi of four lake district woodland. Trans Br Mycol Soc 49:369–383

    Google Scholar 

  86. Hintikka V (1970) Studies on white-rot humus formed by higher fungi in forest soils. Commun Inst For Fenn 69.2:1–68

    Google Scholar 

  87. Hintikka V (1988) On the macromycete flora in oligotrophic pine forests of different ages in south Finland. Acta Bot Fenn 136:89–94

    Google Scholar 

  88. Hintikka V, Korhonen K (1970) Effects of carbon dioxide on the growth of lignicolous and soil-inhabiting hymenomycetes. Commun Inst For Fenn 69.5:1–29

    Google Scholar 

  89. Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: dynamics of carbon, nutrients, and organic constituents. J For Res 9:347–354

    CAS  Google Scholar 

  90. Hirose D, Osono T (2006) Development and seasonal variations of Lophodermium populations on Pinus thunbergii needle litter. Mycoscience 47:242–247

    Google Scholar 

  91. Hitchcock P, Gray TRG, Frankland JC (1997) Production of a monoclonal antibody specific to Mycena galopus mycelium. Mycol Res 101:1051–1059

    Google Scholar 

  92. Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3:484–494

    CAS  Google Scholar 

  93. Holmer L, Stenlid J (1991) Population structure and mating system in Marasmius androsaceus Fr. New Phytol 119:307–314

    Google Scholar 

  94. Hu YL, Wang SL, Zeng DH (2006) Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant Soil 282:379–386

    CAS  Google Scholar 

  95. Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Google Scholar 

  96. Insam H (1996) Microorganisms and humus in soils. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 265–292

    Google Scholar 

  97. Ishikawa H, Osono T, Takeda H (2007) Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest. J For Res 12 (in press)

  98. Ito A (2002) Soil organic carbon storage as a function of the terrestrial ecosystem with respect to the global carbon cycle (in Japanese with English abstract). Jpn J Ecol 52:189–227

    Google Scholar 

  99. Iwabuchi S, Sakai S, Yamaguchi O (1994) Analysis of mushroom diversity in successional young forests and equilibrium evergreen broad-leaved forests. Mycoscience 35:1–14

    Google Scholar 

  100. Iwamoto S, Tokumasu S (2001) Dematiaceous hyphomycetes inhabiting decaying blackish needles of Abies firma and their distribution in the Kanto district, Japan. Mycoscience 42:273–279

    Google Scholar 

  101. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158:569–578

    Google Scholar 

  102. Kaneko N, McLean MA, Parkinson D (1995) Grazing preference of Onychiurus subtenuis (Collembola) and Oppiella nova (Oribatei) for fungal species inoculated on pine needles. Pedobiologia 39:538–546

    Google Scholar 

  103. Kaplan DL, Hartenstein R (1980) Decomposition of lignins by microorganisms. Soil Biol Biochem 12:65–75

    CAS  Google Scholar 

  104. Kendrick WB, Burges A (1962) Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwig 4:313–342

    Google Scholar 

  105. Kinoshita A, Fukuda H (2004) Difference of fruiting bodies of higher fungi between the sites with and without understory management (in Japanese with English abstract). Jpn J For Environ 46:29–34

    Google Scholar 

  106. Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer basidiomycetes, their biology and ecology. Cambridge University Press, Cambridge, pp 67–90

    Google Scholar 

  107. Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microbiol 32:192–194

    PubMed  CAS  Google Scholar 

  108. Kjøller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39:389–422

    Google Scholar 

  109. Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18:589–594

    Google Scholar 

  110. Kögel-Knabner I, Ziegler F, Riederer M, Zech W (1989) Distribution and decomposition pattern of cutin and suberin in forest soils. Z Pflanzenernaehr Bodenk 152:409–413

    Google Scholar 

  111. Kögel-Knabner I, Hatcher PG, Zech W (1991) Chemical structural studies of forest soil humic acids: aromatic carbon fraction. Soil Sci Soc Am J 55:241–247

    Article  Google Scholar 

  112. Koide K, Osono T, Takeda H (2005a) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Google Scholar 

  113. Koide K, Osono T, Takeda H (2005b) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Google Scholar 

  114. Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32:539–67

    CAS  Google Scholar 

  115. Kontchou CY, Blondeau R (1992) Biodegradation of soil humic acid by Streptomyces viridosporus. Can J Microbiol 38:203–208

    PubMed  CAS  Article  Google Scholar 

  116. Kourtev PS, Ehrenfeld JG, Huang WZ (2002) Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem 34:1207–1218

    CAS  Google Scholar 

  117. Kuyper TW, Bokeloh DJ (1994) Ligninolysis and nitrification in vitro by a nitrotolerant and a nitrophobic decomposer basidiomycete. Oikos 70:417–420

    CAS  Google Scholar 

  118. Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258

    Google Scholar 

  119. Lang E, Eller G, Zadrazil F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10

    PubMed  CAS  Google Scholar 

  120. Lange M (1993) Macomycetes under twelve tree species in ten plantations on various soil types in Denmark. Opera Bot 120:1–53

    Google Scholar 

  121. Latter PM (1977) Decomposition of a moorland litter, in relation to Marasmius androsaceus and soil fauna. Pedobiologia 17:418–427

    Google Scholar 

  122. Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241

    CAS  Google Scholar 

  123. Lin TS, Kolattukudy PE (1980) Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. Physiol Plant Pathol 17:1–15

    CAS  Google Scholar 

  124. Lindeberg G (1944) Über die Physiologie ligninabbauender Bodenhymenomyceten. Symb Bot Ups 81:1–183

    Google Scholar 

  125. Lindeberg G (1946) On the decomposition of lignin and cellulose in litter caused by soil-inhabiting Hymenomycetes. Ark Bot 33a:1–16

    Google Scholar 

  126. Liu Y, Lee S, Liao Y (1995) Isolation of a melanolytic fungus and its hydrolytic activity on melanin. Mycologia 87:651–654

    CAS  Google Scholar 

  127. Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036

    CAS  Google Scholar 

  128. Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579

    PubMed  CAS  Google Scholar 

  129. Marín-Pinto P, Vaquerizo H, Peñalver F, Olaizola J, Oria-de-Rueda JA (2006) Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manage 225:296–305

    Google Scholar 

  130. Martin JP, Haider K (1980) Microbial degradation and stabilization of 14C-labelled lignins, phenols, and phenolic polymers in relation to soil humus formation. In: Kirk TK, Higuchi T, Chang HM (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol. I. CRC, Boca Raton, pp 77–100

    Google Scholar 

  131. Mathur SP, Paul EA (1967) Microbial utilization of soil humic acids. Can J Microbiol 13:573–580

    PubMed  CAS  Article  Google Scholar 

  132. McClaugherty C, Berg B (1987) Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30:101–112

    CAS  Google Scholar 

  133. McClaugherty CA, Linkins AE (1990) Temperature responses of enzymes in two forest soils. Soil Biol Biochem 22:29–33

    CAS  Google Scholar 

  134. Mikola P (1956) Studies on the decomposition of forest litter by basidiomycetes. Commun Inst For Fenn 48:4–48

    Google Scholar 

  135. Mishra B, Srivastava LL (1986) Degradation of humic acid of a forest soil by some fungal isolates. Plant Soil 96:413–416

    CAS  Google Scholar 

  136. Mitchell MJ, Parkinson D (1976) Fungal feeding of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:302–312

    Google Scholar 

  137. Miyamoto T, Igarashi T (1993) Fungi associated with litter decomposition (I) Seasonal changes and spatial distribution patterns of fruit bodies in some forest tree species (in Japanese). Trans Jpn For Soc 104:635–638

    Google Scholar 

  138. Miyamoto T, Igarashi T (2004) Spatial distribution of Collybia pinastris sporophores in a Picea abies forest floor over a 5-year period. Mycoscience 45:24–29

    Google Scholar 

  139. Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of litter-decomposing basidiomycetes from Picea forests of Hokkaido. Mycoscience 41:105–110

    CAS  Google Scholar 

  140. Murakami Y (1989) Spatial changes of species composition and seasonal fruiting of the Agaricales in Castanopsis cuspidata forest. Trans Mycol Soc Jpn 30:89–103

    Google Scholar 

  141. Murphy JF, Miller Jr OK (1997) Diversity and local distribution of mating alleles in Marasmiellus praeacutus and Collybia subnuda (Basidiomycetes, Agaricales). Can J Bot 75:8–17

    Google Scholar 

  142. Murphy JF, Miller Jr OK (1993) The population biology of two litter decomposing agarics on a southern Appalachian mountain. Mycologia 85:769–776

    Google Scholar 

  143. Newell K (1984a) Interaction between two decomposer basidiomycetes and a collembolan under sitka spruce: distribution, abundance and selective grazing. Soil Biol Biochem 16:227–233

    Google Scholar 

  144. Newell K (1984b) Interaction between two decomposer basidiomycetes and a collembolan under sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16:235–239

    Google Scholar 

  145. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecology 127:153–165

    Google Scholar 

  146. Obase K, Tamai Y, Miyamoto T, Yajima T (2005) Macrofungal flora on the volcano Usu, deforested by 2000 eruption. Eurasian J For Res 8:65–70

    Google Scholar 

  147. Ohenoja E (1988) Effect of forest management procedures on fungal fruit body production in Finland. Acta Bot Fenn 136:81–84

    Google Scholar 

  148. Okabe H (1979) Mycosociological research of Agaricales in natural forests (I) Characteristic plant flora in 5 slopes and main genera in Agaricales. Bull Kyoto Univ For 51:37–45

    Google Scholar 

  149. Okabe H (1983) Mycosociological research of Agaricales in natural forests (II) Seasonal changes on each stand and life form. Bull Kyoto Univ For 55:20–32

    Google Scholar 

  150. Osono T (2002a) Fungal decomposition of leaf litter in a cool temperate forest. PhD thesis, Kyoto University

  151. Osono T (2002b) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Can J Bot 80:460–469

    Google Scholar 

  152. Osono T (2003) Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44:41–45

    Google Scholar 

  153. Osono T (2005) Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 97:589–597

    PubMed  Google Scholar 

  154. Osono T (2006a) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    PubMed  CAS  Google Scholar 

  155. Osono T (2006b) Fungal decomposition of lignin in leaf litter: comparison between tropical and temperate forests. In: Meyer W, Pearce C (eds) Proc 8th Int Mycol Congr. Cairns, Australia, pp 111–117

  156. Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56

    Google Scholar 

  157. Osono T, Takeda H (2001a) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23

    CAS  Google Scholar 

  158. Osono T, Takeda H (2001b) Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecol Res 16:649–670

    CAS  Google Scholar 

  159. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    CAS  Google Scholar 

  160. Osono T, Takeda H (2004) Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 19:593–602

    Google Scholar 

  161. Osono T, Takeda H (2005a) Decomposition of lignin, holocellulose, polyphenol and soluble carbohydrate in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41–49

    CAS  Google Scholar 

  162. Osono T, Takeda H (2005b) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:51–58

    CAS  Google Scholar 

  163. Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98:172–179

    PubMed  CAS  Google Scholar 

  164. Osono T, Hobara S, Fujiwara S, Koba K, Kameda K (2002) Abundance, diversity, and species composition of fungal communities in a temperate forest affected by excreta of the Great Cormorant Phalacrocorax carbo. Soil Biol Biochem 34:1537–1547

    CAS  Google Scholar 

  165. Osono T, Ono Y, Takeda H (2003a) Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biol Biochem 35:1423–1431

    CAS  Google Scholar 

  166. Osono T, Fukasawa Y, Takeda H (2003b) Roles of diverse fungi in larch needle-litter decomposition. Mycologia 95:820–826

    Google Scholar 

  167. Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Google Scholar 

  168. Osono T, Hobara S, Koba K, Kameda K, Takeda H (2006a) Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biol Biochem 38:517–525

    CAS  Google Scholar 

  169. Osono T, Hobara S, Koba K, Kameda K (2006b) Reduction of fungal growth and lignin decomposition in needle litter by avian excreta. Soil Biol Biochem 38:1623–1630

    CAS  Google Scholar 

  170. Osono T, Hirose D, Fujimaki R (2006c) Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biol Biochem 38:2743–2752

    CAS  Google Scholar 

  171. Osono T, Takeda H, Azuma JI (2007) Carbon isotope dynamics during leaf litter decomposition with reference to lignin fractions. Ecol Res 22 (in press)

  172. Outerbridge RAM (2002) Macrofungus ecology and diversity under different conifer monocultures on southern Vancouver Island. PhD thesis, University of Victoria, Victoria, B.C., Canada

  173. Paim S, Linhares LF, Mangrich AS, Martin JP (1990) Characterization of fungal melanins and soil humic acids by chemical analysis and infrared spectroscopy. Biol Fertil Soils 10:72–76

    CAS  Google Scholar 

  174. Parkinson D, Visser S, Whittaker JB (1979) Effects of collembolan grazing on fungal colonization of leaf litter. Soil Biol Biochem 11:529–535

    Google Scholar 

  175. Ponge JF (1991) Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant Soil 138:99–113

    Google Scholar 

  176. Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    CAS  Google Scholar 

  177. Rai B, Upadhyay RS, Srivastava AK (1988) Utilization of cellulose and gallic acid by litter inhabiting fungi and its possible implication in litter decomposition of a tropical deciduous forest. Pedobiologia 32:157–165

    CAS  Google Scholar 

  178. Rastin N, Schlechte G, Hüttermann A (1990a) Soil macrofungi and some soil biological, biochemical and chemical investigations on the upper and lower slope of a spruce forest. Soil Biol Biochem 22:1039–1047

    CAS  Google Scholar 

  179. Rastin N, Schlechte G, Hüttermann A, Rosenplänter K (1990b) Seasonal fluctuation of some biological and biochemical soil factors and their dependence on certain soil factors on the upper and lower slope of a spruce forest. Soil Biol Biochem 22:1049–1061

    CAS  Google Scholar 

  180. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  181. Rayner ADM, Todd NK (1979) Population and community structure and dynamics of fungi in decaying wood. Adv Bot Res 7:333–420

    Google Scholar 

  182. Rayner ADM, Webber JF (1984) Interspecific mycelial interactions – an overview. IN: Jennings DH, Rayner ADM (eds) The ecology and physiology of fungal mycelium. Cambridge University Press, Cambridge, pp 383–417

    Google Scholar 

  183. Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729

    Google Scholar 

  184. Rodríguez A, Carnicero A, Perestelo F, de la Fuente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    PubMed  Google Scholar 

  185. Ruscoe QW (1971) The soil mycoflora of a hard beech forest. NZ J Sci 14:554–567

    Google Scholar 

  186. Saito T (1956) Microbiological decomposition of beech litter. Ecol Rev 14:141–147

    CAS  Google Scholar 

  187. Saito T (1957) Chemical changes in beech litter under microbiological decomposition. Ecol Rev 14:209–216

    CAS  Google Scholar 

  188. Saito T (1960) An approach to the mechanism of microbial decomposition of beech litter. Sci Rep Tohoku Univ Ser IV (Biol) 25:125–131

    Google Scholar 

  189. Saito T (1966) Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol Rev 16:245–254

    Google Scholar 

  190. Såstad SM (1995) Fungi-vegetation relationships in a Pinus sylvestris forest in central Norway. Can J Bot 73:807–816

    Google Scholar 

  191. Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    CAS  Google Scholar 

  192. Savoie JM, Mata G, Billette C (1998) Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl Microbiol Biotechnol 49:589–593

    CAS  Google Scholar 

  193. Scheu S (1993) Litter microflora-soil macrofauna interactions in lignin decomposition: a laboratory experiment with 14C-labelled lignin. Soil Biol Biochem 25:1703–1711

    CAS  Google Scholar 

  194. Schnitzer M, Chan YK (1986) Structural characteristics of a fungal melanin and a soil humic acid. Soil Sci Soc Am J 50:67–71

    CAS  Article  Google Scholar 

  195. Sedia EG, Ehrenfeld JG (2006) Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biol Fertil Soils 43:177–189

    CAS  Google Scholar 

  196. Shantz HL, Piemeisel RL (1917) Fungus fairy rings in eastern Colorado and their effect on vegetation. J Agric Res 11:191–245

    Google Scholar 

  197. Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    CAS  Google Scholar 

  198. Sinsabaugh RL (2005) Fungal enzymes at the community scale. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. Taylor & Francis, New York, pp 349–360

    Google Scholar 

  199. Sinsabaugh RL, Liptak MA (1997) Enzymatic conversion of plant biomass. In: Wicklow DT, Söderström B (eds) The Mycota IV, environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 347–357

    Google Scholar 

  200. Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    CAS  Google Scholar 

  201. Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24

    CAS  Google Scholar 

  202. Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    CAS  Google Scholar 

  203. Soma K, Saito T (1979) Ecological studies of soil organisms with references to the decomposition of pine needles. I. Soil macrofaunal and mycofloral surveys in coastal pine plantations. Rev Ecol Biol Sol 16:337–354

    Google Scholar 

  204. Soponsathien S (1998) Some characteristics of ammonia fungi. 1. In relation to their ligninolytic enzyme activities. J Gen Appl Microbiol 44:337–345

    PubMed  CAS  Google Scholar 

  205. Sprague R, Lawrence DB (1959a) The fungi on deglaciated Alaskan terrain of known age (Part I). Res Stud 27:110–128

    Google Scholar 

  206. Sprague R, Lawrence DB (1959b) The fungi on deglaciated Alaskan terrain of known age (Part II). Res Stud 27:214–229

    Google Scholar 

  207. Sprague R, Lawrence DB (1960) The fungi on deglaciated Alaskan terrain of known age (Part III). Res Stud 28:1–20

    Google Scholar 

  208. Steffen KT (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. PhD thesis, University of Helsinki, Finland

  209. Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    PubMed  CAS  Google Scholar 

  210. Steffen KT, Hofrichter M, Hatakka A (2002a) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 30:550–555

    CAS  Google Scholar 

  211. Steffen KT, Hatakka A, Hofrichter M (2002b) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    PubMed  CAS  Google Scholar 

  212. Straatsma G, Ayer F, Egli S (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res 105:515–523

    Google Scholar 

  213. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol. 7. Blackwell, Oxford

    Google Scholar 

  214. Tabak HH, Cooke WMB (1968) The effects of gaseous environments on the growth and metabolism of fungi. Bot Rev 34:126–252

    CAS  Article  Google Scholar 

  215. Tagger S, Perissol C, Gil G, Vogt G, Le Petit J (1998) Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme Microb Technol 23:372–379

    CAS  Google Scholar 

  216. Takeda H (1998) Decomposition processes of litter along a latitudinal gradient. In: Sassa K (ed) Environmental forest science. Kluwer, Dordrecht, pp 197–206

    Google Scholar 

  217. Takeda H, Abe T (2001) Templates of food-habitat resources for the organization of soil animals in temperate and tropical forests. Ecol Res 16:961–973

    Google Scholar 

  218. Tillett R, Walker JRL (1990) Metabolism of ferulic acid by Penicillium sp. Arch Microbiol 154:206–208

    CAS  Google Scholar 

  219. Tokumasu S (1996a) Effects of global warming on terrestrial saprophytic microfungal communities (in Japanese). Nippon Kingakukai Kaiho 37:105–110

    Google Scholar 

  220. Tokumasu S (1996b) Mycofloral succession on Pinus densiflora needles on a moder site. Mycoscience 37:313–321

    Google Scholar 

  221. Tokumasu S (1998) Fungal succession on pine needles fallen at different seasons: the succession of interior colonizers. Mycoscience 39:409–416

    Google Scholar 

  222. Tokumasu S (2001) Geographical distribution of Sproridesmium goidanichii in pine forests of Japan. Mycoscience 42:575–589

    Google Scholar 

  223. Tresner HD, Backus MP, Curtis JT (1954) Soil microfungi in relation to the hardwood forest continuum in southern Wisconsin. Mycologia 46:314–333

    Google Scholar 

  224. Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Google Scholar 

  225. Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mycoscience 46:268–271

    CAS  Google Scholar 

  226. Tuomela M, Steffen KT, Kerko E, Hartikainen H, Hofrichter M, Hatakka A (2005) Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiol Ecol 53:179–186

    PubMed  CAS  Google Scholar 

  227. Tyler G (1985) Macrofungal flora of Swedish beech forest related to soil organic matter and acidity characteristics. For Ecol Manage 10:13–29

    Google Scholar 

  228. Tyler G (1991) Effects of litter treatments on the sporophore production of beech forest macrofungi. Mycol Res 95:1137–1139

    Google Scholar 

  229. Tyler G (1992) Tree species affinity of decomposer and ectomycorrhizal macrofungi in beech (Fagus sylvatica L.), oak (Quercus robur L.) and hornbeam (Carpinus betulus L.) forests. For Ecol Manage 47:269–284

    Google Scholar 

  230. Villeneuve N, Grandtner MM, Fortin JA (1989) Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Can J Bot 67:2616–2629

    Google Scholar 

  231. Virzo de Santo A, Rutigliano FA, Berg B, Fioretto A, Puppi G, Alfani A (2002) Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests. Acta Oecol 23:247–259

    Google Scholar 

  232. Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Google Scholar 

  233. Visser S, Whittaker JB (1977) Feeding preferences for certain litter fungi by Onychiurus subtenuis (Collembola). Oikos 29:320–325

    Google Scholar 

  234. Visser S, Whittaker JB, Parkinson D (1981) Effects of collembolan grazing on nutrient release and respiration of a leaf litter inhabiting fungus. Soil Biol Biochem 13:215–218

    CAS  Google Scholar 

  235. Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    CAS  Google Scholar 

  236. Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  237. Waldrop MP, McColl JG, Powers RF (2003) Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Sci Soc Am J 67:1250–1256

    CAS  Article  Google Scholar 

  238. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004a) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Google Scholar 

  239. Waldrop MP, Zak DR, Sinsabaugh RL (2004b) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451

    CAS  Google Scholar 

  240. Weaver T (1975) Fairy-ring fungi as decomposers. Proc Mont Acad Sci 35:34–38

    CAS  Google Scholar 

  241. White NA, Boddy L (1992) Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiol Lett 98:75–80

    CAS  Google Scholar 

  242. Widden P (1984) The effects of temperature on competition for spruce needles among sympatric species of Trichoderma. Mycologia 76:873–883

    Google Scholar 

  243. Widden P, Parkinson D (1975) The effects of a forest fire on soil microfungi. Soil Biol Biochem 7:125–138

    Google Scholar 

  244. Widden P, Hsu D (1987) Competition between Trichoderma species: effects of temperature and litter type. Soil Biol Biochem 19:89–93

    Google Scholar 

  245. Widden P, Scattolin V (1988) Competitive interactions and ecological strategies of Trichoderma species colonizing spruce litter. Mycologia 80:795–803

    Google Scholar 

  246. Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Google Scholar 

  247. Whalley AJS (1996) The xylariaceous way of life. Mycol Res 100:897–922

    Google Scholar 

  248. Wicklow DT, Whittingham WF (1974) Soil microfungal changes among the profiles of disturbed conifer-hardwood forests. Ecology 55:3–16

    Google Scholar 

  249. Yamanaka T (1995) Changes in organic matter composition of forset soil treated with a large amount of urea to promote ammonia fungi and the abilities of these fungi to decomposer organic matter. Mycoscience 36:17–23

    Google Scholar 

  250. Yamashita S, Hijii N (2004) Relationships between seasonal appearance and longevity of fruitbodies of Agaricales and meteorological factors in a Japanese red pine forest. J For Res 9:165–171

    Google Scholar 

  251. Yamashita S, Hijii N (2006) Spatial distribution of the fruiting bodies of Agaricales in a Japanese red pine (Pinus densiflora) forest. J For Res 11:181–189

    Google Scholar 

  252. Zhang Q, Liang Y (1995) Effects of gap size on nutrient release from plant litter decomposition in a natural forest ecosystem. Can J For Res 25:1627–1638

    Google Scholar 

Download references

Acknowledgments

I thank Dr. Hiroshi Takeda and Dr. Seiji Tokumasu for encouragement and useful comments on the ecology of fungi; Dr. Dai Hirose and Ms. Kanade Koide for useful discussions; Dr. Tony Trofymow for comments on decomposition; Dr. Caroline M. Preston for helpful comments on chemical analysis; and Dr. Kari T. Steffen for comments on ligninolytic enzymes of litter-decomposing basidiomycetes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takashi Osono.

Additional information

Takashi Osono is the recipient of the 11th Denzaburo Miyadi Award.

About this article

Cite this article

Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22, 955–974 (2007). https://doi.org/10.1007/s11284-007-0390-z

Download citation

Keywords

  • Basidiomycetes
  • Bleach
  • Fungal community
  • Leaves
  • Lignin