Ecological Research

, Volume 21, Issue 2, pp 255–262 | Cite as

Ecophysiological observations on Drosophyllum lusitanicum

  • Wolfram AdlassnigEmail author
  • Marianne Peroutka
  • Gregor Eder
  • Walter Pois
  • Irene K. Lichtscheidl
Original Article


The carnivorous plant Drosophyllum lusitanicum inhabits heathland and ruderal sites in Portugal, Spain and Morocco. In the literature, various theories have been discussed concerning the ability of Drosophyllum to survive the annual dry period in summer. In August 2004, we examined: (1) the microclimate, (2) soil parameters and (3) the physiological conditions of the plants on two sites in Portugal and Spain. First, during the day, plants are exposed to very high air and soil temperatures and very low air humidity. The climatic extremes are not significantly softened by the population, only the wind speed is drastically decreased. During the night, on the other hand, very high air humidity and dew formation could be observed. The harsh climate is accompanied by stressful soil conditions. Second, the soil is completely dry, poor in fine earth, calcium and nutrients and more or less acid. Third, in spite of these climatic and edaphic extremes, all plants were green, produced trapping mucilage and caught numerous animals. Far from being affected by these conditions, Drosophyllum showed even better growth and reproduction on more extreme sites. We analysed the root system and found living fine roots missing. The osmotic value of the plants is rather low and water storage organs are absent. Therefore we conclude that in summer Drosophyllum is nourished by the dew at night.


Drosophyllum lusitanicum Ecophysiology Microclimate Soil Carnivorous plants 



Prof. Dr Martina Weber, Prof. Dr Walter Url and Prof. Dr Roland Albert supported this project from the beginning and contributed many ideas. Prof. Dr Ruis Malhó hosted us in his laboratory in Lisbon. Dr Frederic Pautz and his team helped us with the literature search. Dr Gert Bachmann made the atomic absorption spectrometry of soil samples possible. K. Pranjić helped with the examination of herbarium specimen. Special thanks are due to Prof. Dr Luis Pedro, Prof. Dr Harald Niklfeld and Mag. Ana Julia Pereira who shared their knowledge about Drosophyllum sites with us. Without them, we would have come home without success! This project was supported by grant no. 000134 of the Büro für Auslandsbeziehungen of the University of Vienna.


  1. Adlassnig W, Peroutka M, Lichtscheidl IK, Lambers H (2005) Roots of carnivorous plants. Plant Soil 274:127–140CrossRefGoogle Scholar
  2. Adler W, Oswald K, Fischer R (1994) Exkursionsflora von Österreich. Bestimmungsbuch für alle in Österreich wildwachsenden sowie die wichtigsten kultivierten Gefäßpflanzen (Farnpflanzen und Samenpflanzen) mit Angaben über ihre Ökologie und Verbreitung. Ulmer, WienGoogle Scholar
  3. Barthlott W, Porembski S, Seine R, Theisen I (2004) Karnivoren. Biologie und Kultur fleischfressender Pflanzen. Ulmer, StuttgartGoogle Scholar
  4. Berényi D (1967) Mikroklimatologie. Mikroklima der bodennahen Atmosphäre. Fischer, StuttgartGoogle Scholar
  5. Bloom PR (2000) Soil pH and pH buffering. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, Fla., pp B333–B352Google Scholar
  6. Braem G (2002) Fleischfressende Pflanzen Arten und Kultur. Augustus, MünchenGoogle Scholar
  7. Brittnacher J, Rice B (2004) The ICPS Sarracenia distribution program: satisfying the hunger of poachers? In: The Fifth ICPS Congress. International Carnivorous Plant Society, LyonGoogle Scholar
  8. Carlquist S, Wilson EJ (1995) Wood anatomy of Drosophyllum (Droseraceae)—ecological and phylogenetic considerations. Bull Torrey Bot Club 122:185–189Google Scholar
  9. Castroviejo S, Aedo C (eds) (1997) Flora iberica. Plantas vasculas de la Península Ibérica e islas Baleares. Real Jardín Botánico de Madrid, MadridGoogle Scholar
  10. D’Amato P (1998) The savage garden. Cultivating carnivorius plants. Ten Speed, Berkeley, Calif.Google Scholar
  11. Darwin C (1876) Insektenfressende Pflanzen. Schweizerbart’sche, StuttgartGoogle Scholar
  12. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574Google Scholar
  13. França C (1925) Recherches sur le Drosophyllum lusitanicum, Link et remarques sur les plantes carnivores. Arch Port Sci Biol 1:1–30Google Scholar
  14. Garrido B, Hampe A, Maranon T, Arroyo J (2003) Regional differences in land use affect population performance of the threatened insectivorous plant Drosophyllum lusitanicum (Droseraceae). Divers Distrib 9:335–350CrossRefGoogle Scholar
  15. Gil Jiménez Y, Navas Fernández P, Navas Fernández D, Pérez Latorre AV, Nieto Caldera JM (1996) Tipos de hábitats naturales contemplados en la directiva 92/43 C.E.E. presentes en el Campo de Gibraltar y espacios naturales de interés para su conversación. Almoraima 15:255–266Google Scholar
  16. Hegi G (1906) Illustrierte Flora von Mittel-Europa. Mit besonderer Berücksichtigung von Oesterreich, Deutschland und der Schweiz. Zum Gebrauch in den Schulen und zum Selbstunterricht. Parey, BerlinGoogle Scholar
  17. Heslop-Harrison Y (1976) Enzyme secretion and digest uptake in carnivorous plants. In: Sunderland NE (eds) Perspectives in experimental biology. SEB symposium, vol 2. Proceedings of the 50th anniversary meeting. Pergamon, OxfordGoogle Scholar
  18. Höfler K, Url W (1958) Kann man osmotische Werte plasmolytisch bestimmen? Ber Dtsch Bot Ges 70:462–476Google Scholar
  19. Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, LondonGoogle Scholar
  20. Keren R (2000) Salinity. In: Sumner ME (eds) Handbook of soil sciences. CRC, Boca Raton, Fla., pp G3–G25Google Scholar
  21. Léopoldès L (2002) Drosophyllum lusitanicum. Dionée 48:21–24Google Scholar
  22. Lloyd FE (1942) The carnivorous plants. Ronald Press, New YorkGoogle Scholar
  23. Lösch R (2002) Wasserhaushalt der Pflanzen. Quelle & Meyer, WiesbadenGoogle Scholar
  24. Ludwig F, Dawson TE, Kroon H, Berendse F (2003) Hydraulic lift in Acacia trotilis trees on an East African savanna. Oecologia 134:293–300PubMedGoogle Scholar
  25. Maresch W, Medenbach O, Trochim HD (1987) Gesteine. Mosaik, MünchenGoogle Scholar
  26. Marloth R (1908) Das Kapland, insbesondere das Reich der Kapflora, das Waldgebiet und die Karoo pflanzengeographisch dargestellt. In: Marloth R, Schimpers AFW (eds) Wissenschaftliche Ergebnisse der deutschen Tiefsee Expedition “Valdivia”. Fischer, Jena, pp 1–436Google Scholar
  27. Mazrimas JA (1972) Drosophyllum lusitanicum. Carniv Plant Newsl 1:5–6Google Scholar
  28. Müller J, Deil U (2001) Ecology and structure of Drosophyllum lusitanicum (L.) Link populations in the south-western of the Iberian peninsula. Acta Bot Malacitana 26:47–68Google Scholar
  29. Munné-Bosch S, Nogués S, Alegre L (1999) Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrub communities in Mediterranean field conditions. New Phytol 144:109–119CrossRefGoogle Scholar
  30. Nahalka J, Blanarik P, Gemeiner P, Matusova E, Partlova I (1996a) The chemical/osmotic conditions for growth and plumbagin accumulation of Drosophyllum lusitanicum Link suspension cultures. Biotechnol Lett 18:1453–1458CrossRefGoogle Scholar
  31. Nahalka J, Blanarik P, Gemeiner P, Matusova E, Partlova I (1996b) Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum Link. J Biotechnol 49:153–161CrossRefGoogle Scholar
  32. Ocaña ME, Valdés B, Moreno Socías E, Parra R (2000) Drosophyllum lusitancium (L.) Link. In: Blanca G, Cabezudo B, Hernández-Bermejo JE, Herrera CM, Muñoz J, Valde (eds) Libro rojo de la flora silvestre amenazada de Andalucía. Part II. Especies vulnerables. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 120–123Google Scholar
  33. Ojeida F, Simmons MT, Arroyo J, Marañó T, Cowling RM (2001) Biodiversity in South African fynbos and Mediterranean heathland. J Veg Sci 12:867–874Google Scholar
  34. Ortega Olivencia A, Carrasco Claver JP, Devesa Alcaraz JA (1995) Floral and reproductive biology of Drosophyllum lusitanicum (L.) Link (Droseraceae). Bot J Linn Soc 118:331–351CrossRefGoogle Scholar
  35. Ortega Olivencia A, Paredes JAL, Rodriguez Riano T, Devesa JA (1998) Modes of self-pollination and absence of cryptic self-incompatibility in Drosophyllum lusitanicum (Droseraceae). Bot Acta 111:474–480Google Scholar
  36. Precht H, Christophersen J, Hensel H, Larcher W (1973) Temperature and life. Springer, Berlin Heidelberg New YorkGoogle Scholar
  37. Rice B (1998) Testing the appetites of Ibicella and Drosophyllum. Carniv Plant Newsl 28:40–43Google Scholar
  38. Rivas Rangel R, Plaza Arregui L, López Quintanilla J, Caseiro E (2004) Conservation of threatened plants in Málaga province (Spain). In: Fourth European conference on the Conservation of Wild Plants, ValenciaGoogle Scholar
  39. Schachtschnabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U, Fischer WR, Renger M, Strebel O (1992) Lehrbuch der Bodenkunde. Enke, StuttgartGoogle Scholar
  40. Scheberle G (1990) Die Plasmolytisch–Volumetrische Methode Höflers. Eine kritische Beurteilung. In: Wien U (ed) Berichte der Universität Wien. Institut für Pflanzenphysiologie, Wien, pp 111–139Google Scholar
  41. Schnepf E (1960) Zur Feinstruktur der Drüsen von Drosophyllum lusitanicum. Planta 54:641–674CrossRefGoogle Scholar
  42. Sharpley A (2000) Phosphorous availability. In: Sumner ME (eds) Handbook of soil science. CRC Press, Boca Raton, Fla., pp D18–D38Google Scholar
  43. Slack A (1979) On growing Drosophyllum lusitanicum, the Portuguese dewy pine. Carniv Plant Newsl 8:64–67Google Scholar
  44. Slack A (2000) Carnivorous plants. MIT, YeovilGoogle Scholar
  45. Spaargaren OC (2000) Other systems of soil classification. In: Sumner ME (eds) Handbook of soil science. CRC Press, Boca Raton, Fla., pp E137–E174Google Scholar
  46. Tanner S, Prewitt C (2005) The weather underground.
  47. Thor G (1988) The genus Utricularia in the Nordic countries, with special emphysis on U. stygia and U. ochroleuca. Nord J Bot—Sect Holarct Gen Taxon 8:213–225Google Scholar
  48. Url WG (1971) The site of penetration resistance to water in plant protoplasts. Protoplasma 72:427–447CrossRefGoogle Scholar
  49. Valdés B (1996) El elemento endémico en el Campo de Gibraltar. Almoraima 15:13–33Google Scholar
  50. von Denffer D, Ziegler H, Ehrendorfer F, Besinsky A (1983) Straßburger. Lehrbuch der Botanik für Hochschulen. Fischer, StuttgartGoogle Scholar
  51. von Willert DJ, Eller BM, Werger MJA, Binckmann E, Ihlenfeldt H-D (1992) Life strategies of succulents in desserts, with special references to the Namib desert. Cambridge University Press, CambridgeGoogle Scholar
  52. Willkomm M (1893) Supplementum pedroni florae hispanicae, sive enumeratio et descriptio omnium plantarum inde ab anno 1862 usque ad annum 1893 in Hispania detectarum quae innotuerunt auctori, adjectis locis novis specierum jam notarum. Hofbuchdruckerei, StuttgartGoogle Scholar
  53. Willkomm M, Lange J (1883) Prodomus florae Hispaniae seu synopsis methodica omnium plantarum in Hispania sponte nascentium vel frequentis cultarum quae innotuerunt. Hofbuchdruckerei, StuttgartGoogle Scholar
  54. Winkler S (1964) Entwicklung und Funktion gewisser Sterntrichome der Melastomaceen Miconia magnifica, Triana und Medinilla venosa. Österr Bot Z 111:372–392CrossRefGoogle Scholar
  55. Winkler S (1973) Einführung in die Pflanzenökologie. Fischer, StuttgartGoogle Scholar
  56. Wysocki DA, Schoeberger PJ, LaGarry HE (2000) Geomorphology of soil landscapes. In: Sumner ME (eds) Handbook of soil science. CRC, Boca Raton, Fla., pp E5–E39Google Scholar

Copyright information

© The Ecological Society of Japan 2005

Authors and Affiliations

  • Wolfram Adlassnig
    • 1
    Email author
  • Marianne Peroutka
    • 1
  • Gregor Eder
    • 1
  • Walter Pois
    • 1
  • Irene K. Lichtscheidl
    • 1
  1. 1.Department of Cell Physiology and Scientific Film, Cell Imaging and Ultrastructure Research Unit, Faculty of Life SciencesUniversity of ViennaViennaAustria

Personalised recommendations