Skip to main content
Log in

Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities

  • Original Article
  • Published:
Ecological Research

Abstract

A soil arthropod community was studied in a dry evergreen forest over a 3-year period from May 1998 to April 2001. Population abundance, species composition, and community structure were investigated over the 3-year study period. The soil arthropods consisted of Acari (75.38%), Collembola (16.11%), and others (8.51%), and their abundances showed a clear difference between the rainy and dry seasons. Population abundance of Collembola and Acari were low during drought conditions. The humidity was the most important factor determining distribution, abundance, and survival of soil Collembola in this tropical forest. High predation and low accumulation of organic matter caused low population abundance of Collembola in the tropical habitat. The collembolan community was dominated by a few dominant species over the study period. The pattern of seasonal changes in numbers of Collembola was similar over the 3-year study period. The species composition of the collembolan community was constant and persistent throughout a 3-year study period. Thus, the collembolan community showed constancy in its species composition with seasonal variability over the 3-year study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Badejo MA, Van Straalen NM (1993) Seasonal abundance of springtails in two contrasting environments. Biotropica 25:222–228

    Google Scholar 

  • Beck L (1967) Die bodenfauna des neotropischen regenwaldes, Atlas do Simposio sobre a Biota Amazonica, 5 (Zoology), pp 97–101

  • Belfield W (1956) The Arthropoda of the soil in a West African pasture. J Anim Ecol 25:275–287

    Google Scholar 

  • Block W (1970) Micro-arthropoda in some Uganda soils. In: Phillipson J (eds) Proceedings of a UNESCO/IBP symposium on methods of study in soil ecology. UNESCO, Paris, pp 195–202

  • Critchley BR, Cook AG, Critchley U, Perfect TJ, Russell-Smith A, Yeadon R (1979) Effects of bush clearing and soil cultivation on the invertebrate fauna of a forest soil in the humid tropical. Pedobiologia 19:425–438

    Google Scholar 

  • Culik MP, Filho DZ (2003) Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. Biodivers Conserv 12:1119–1143

    Article  Google Scholar 

  • Deharveng L, Bedos A (1993) Factors influencing diversity of soil Collembola in a tropical mountain forest (Doi Inthanon, Northern Thailand). In: Paoletti MG, Foissner W, Coleman D (eds) Soil biota, nutrient cycling, and farming systems. Lewis, London, pp 91–111

  • Di Castri F (1963) Etat de nos connaissances sur les biocenoses edaphiques du Chili. In: Doeksen J, van der Drift J (eds) Soil organisms. North Holland, Amsterdam, pp 375–385

  • Goehring DM, Daily GC, Sekercioglu CH (2002) Distribution of ground-dwelling arthropods in tropical countryside habitats. J Insect Conserv 6:83–91

    Article  Google Scholar 

  • Gonzalez G, Ley RE, Schmidt ST (2001) Soil ecological interactions: compositions between tropical and subalpine forests. Oecologia 128:549–556

    Article  Google Scholar 

  • Hasegawa M, Takeda H (1995) Changes in feeding attributes of 4 collembolan populations during the decomposition process of pine needles. Pedobiologia 39:155–169

    Google Scholar 

  • Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL (1998) Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol 9:33–38

    Article  Google Scholar 

  • Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL (1999) Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80:1873–1882

    Google Scholar 

  • Kanzaki M, Yoda K, Dammanonda P (1995) Mosaic structure and tree growth pattern in a monodominant tropical seasonal evergreen forest in Thailand. In: Box EO, et al, (eds) Vegetation science in forestry. Kluwer Academic, Dordrecht, pp 495–513

  • Lasebikan BA (1975) The effect of clearing on the soil arthropods of a Nigerian rain forest. Biotropica 7:84–89

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Barois I, Toutian F, Spain A, Schaefer R (1992) A hierarchical model for decomposition in terrestrial ecosystem: application to soils in the humid tropics. Biotropica 25: 130–150

    Google Scholar 

  • Lavelle P, Bignel D, Lepagge M, Wolters V, Roger P, Head OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Euro J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Madge DS (1965) Leaf fall and litter disappearance in a tropical forest. Pedobiologia 5:237–288

    Google Scholar 

  • Maldague ME, Hilger F (1963) Observations faunistiques et microbiologiques dans quelques biotropes foresties equatoriaux. In: Doeksen J, van der Drift J (eds) Soil organisms. North Holland, Amsterdam, pp 368–375

  • Morishita M (1959) Measuring of interspecific association and similality btweeen communties. Mem Fac Sci Kyushu Univ Ser E (Biol) 3:65–80

    Google Scholar 

  • Ogino K, Saichual P, Imadate G (1965) Seasonal changes of soil microarthropod in central Thailand. Nat Life Southeast Asia 14:303–315

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition process. Oikos 39:288–388

    Google Scholar 

  • Pfeiffer WJ (1996) Litter invertebrates. In: Regan DP, Waide RB (eds) The food web of a tropical rain forest. Chicago University Press, Chicago, pp 137–183

  • Sakurai K, Tanaka S, Ishizuki S, Kanzaki M (1998) Difference in soil properties of dry evergreen and dry deciduous forest in the Sakaerat Environmental Research Station. Tropics 108:61–80

    Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioural sciences. McGraw Hill Kogakusha, Tokyo

  • Stanton N (1979) Patterns of species diversity in temperate and tropical litter mites. Ecology 60:295–304

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystem. Blackwells, Oxford

  • Takeda H (1981) Effects of shifting cultivation on the soil meso-fauna with species reference to collembolan populations in the north-east Thailand. Mem Coll Agric Kyoto Univ 118:45–60

    Google Scholar 

  • Takeda H (1984) A long term study of life cycle and population dynamics of Folsomia octoculata Handschin (Insecta:Collembola) in a pine forest soil. Res Popul Ecol 26:188–219

    Google Scholar 

  • Takeda H (1987) Dynamics and maintenance of collembolan community structure in a forest soil system. Res Popul Ecol 29:291–346

    Google Scholar 

  • Takeda H (1995) Templates for the organization of collembolan communities. In: Edwards CA, Abe T, Striganova BR (eds) Structure and function of soil communties. Kyoto University Press, Kyoto, pp 1–18

  • Takeda H (1996) Templates for the organization of soil animal communities in tropical forests. In: Turner IM, Diong CH, Lim SS, Ng PK (eds) Biodiversity and the dynamics of ecosystems (eds) DIWPA Ser 1:217–226

  • Takeda H, Abe T (2001) Templates of food-habitat resources for the organization of soil animals in temperate ad tropical forests. Ecol Res 16:961–973

    Article  Google Scholar 

  • Takeda H, Ichimura T (1983) Feeding attributes of 4 collembolan species in a pine forest soil. Pedobiologia 25:373-381

    Google Scholar 

  • Wachrinrat C (2000) Community dynamics of building phase in fire and non-fire protected secondary dry dipterocarp forest, Nakhon Ratchasima. Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic, London

  • Wolda H (1983) Spatial and temporal variation in abundance in tropical animals. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Scientific, Oxford, pp 93–105

  • Yamashita T, Takeda H (1998) Decomposition and nutrient dynamics of leaf litter in litter bags of two mesh sizes set in two dipterocarp forest sites in Peninsular Malaysia. Pedobiologia 42:11–21

    Google Scholar 

  • Zou X, Zucca CP, Waide RB, McDowell WH (1995) Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico. For Ecol Manage 78:147–157

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the students of the Forest Entomology Laboratory, Faculty of Forestry, Kasetsart University for their assistance in the sampling of soil arthropods and to Drs. M. Hasegawa and Barclay Hugh (Pacific Forestry Center, Canada) for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decha Wiwatwitaya.

Appendix

Appendix

The abundance of collembolan species; density is expressed as numbers per m2. The mean densities are calculated over the 3 years

Species

First year Mean±S.E.

Second year Mean±S.E.

Third year Mean±S.E.

Mean

Relative abundance (%)

1. Isotomiella minor

1,858±479

1,293±177

1,193±230

1,448±295

26.45

2. Sminthurides spp.

849±271

702±221

951±314

834±267

15.23

3. Proisotoma sp.

884±324

282±79

1,189±325

785±243

14.34

4. Pseudosinella spp.

524±101

222±50

511±137

419±96

7.66

5. Megalothorax sp.

153±80

451±145

638±184

414±136

7.56

6. Lepidocyrtus spp.

333±65

293±57

193±32

273±51

4.99

7. Folsomides parvulus

256±70

227±84

291±103

258±86

4.71

8. Cryptopygus sp.

287±133

49±14

49±19

128±55

2.34

9. Sinella spp.

211±81

129±48

38±14

126±48

2.30

10. Pseudachorutes sp.

107±31

140±81

102±22

116±45

2.12

11. Brachystomella sp.

31±19

147±59

158±48

112±42

2.04

12. Tullbergia sp.

64±26

42±18

191±60

99±35

1.81

13. Hypogastrura sp.

42±24

118±52

84±34

82±37

1.49

14. Entomobrya sp.

89±31

140±87

7±3

79±40

1.43

15. Dicyrtoma sp.

76±38

47±16

47±15

56±23

1.03

16. Anurida sp.

0±0

84±21

76±36

53±19

0.97

17. Onychiurus sp.

42±15

71±25

29±8

47±16

0.87

18. Friesea sp.

9±7

60±21

53±22

41±17

0.74

19. Sminthurinus spp.

0±0

13±8

104±33

39±14

0.72

20. Neanura sp.

62±28

0±0

2±2

22±10

0.39

21. Sminthurus sp.

29±11

9±6

9±7

16±6

0.28

22. Callyntrura sp.

11±4

7±2

13±8

10±5

0.19

23. Arrhopalites sp.

7±4

2±2

11±9

7±5

0.12

24. Salina sp.

0±0

18±8

2±2

7±3

0.12

25. Odontella sp.

2±2

0±0

5±3

2±2

0.04

26. Microparonella sp.

2±2

0±0

0±0

1±1

0.01

27. Anurophorus sp.

0±0

2±2

0±0

1±1

0.01

Total

5,475

100

About this article

Cite this article

Wiwatwitaya, D., Takeda, H. Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecol Res 20, 59–70 (2005). https://doi.org/10.1007/s11284-004-0013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-004-0013-x

Keywords

Navigation