Skip to main content

Advertisement

Log in

Comparison of mandibular buccal shelf morphology between adolescents and adults with different vertical patterns using CBCT

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

This retrospective study aimed to analyze the anatomical structure of the mandibular buccal shelf (MBS) in adolescents and adults with different vertical patterns to determine the optimal location for miniscrew insertion in orthodontic treatment.

Methods

Cone-beam computed tomography (CBCT) scans of 230 patients were utilized for measurements. The morphology and thickness of alveolar bone at the MBS were measured. Two-way ANOVA and regression analysis were conducted to analyze the influencing factors on alveolar bone and cortical bone thickness.

Results

Age had a significant effect on alveolar bone thickness (level I: F = 62.449, level II: F = 18.86, p < 0.001), cortical bone thickness (level II: F = 18.86, p < 0.001), alveolar bone tilt (F = 6.267, p = 0.013), and second molar tilt (F = 6.693, p = 0.01). Different vertical patterns also influenced alveolar bone thickness (level I: F = 20.950, level II: F = 28.470, p < 0.001), cortical bone thickness (level I: F = 23.911, level II: F = 23.370, p < 0.001), and alveolar bone tilt (F = 27.046, p < 0.001). As age increased, the alveolar bone thickness at level I decreased by 0.096 mm and at level II decreased by 0.073 mm. Conversely, the thickness of alveolar bone at level I and level II increased by 0.06 mm and 0.075 mm, respectively. The cortical bone thickness at level I and level II increased by 0.024 mm and 0.29 mm, respectively. However, the alveolar bone thickness decreased by 0.931 mm and 1.545 mm at level I and level II, and the cortical bone thickness decreased by 0.542 mm and 0.640 mm at level I and level II, respectively.

Conclusion

Age, different vertical patterns, alveolar bone inclination, and different shapes of MBS significantly affected the thickness of alveolar bone and cortical bone in the MBS area. Notably, only alveolar bone thickness and cortical bone thickness at level II were affected by age and different vertical patterns simultaneously. These findings can provide valuable insights for orthodontic practitioners in selecting the most suitable location for miniscrew insertion during treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and methods not included in the manuscript are available on request from the authors.

References

  1. Sung EH, Kim SJ, Chun YS, Park YC, Yu HS, Lee KJ. Distalization pattern of whole maxillary dentition according to force application points. Korean J Orthod. 2015;45(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chung KR, Kim SH, Choo H, Kook YA, Cope JB. Distalization of the mandibular dentition with mini-implants to correct a Class III malocclusion with a midline deviation. Am J Orthod Dentofacial Orthop. 2010;137(1):135–46.

    Article  PubMed  Google Scholar 

  3. Nishimura M, Sannohe M, Nagasaka H, Igarashi K, Sugawara J. Nonextraction treatment with temporary skeletal anchorage devices to correct a Class II Division 2 malocclusion with excessive gingival display. Am J Orthod Dentofac Orthop. 2014;145(1):85–94.

    Article  Google Scholar 

  4. Scheffler NR, Proffit WR, Phillips C. Outcomes and stability in patients with anterior open bite and long anterior face height treated with temporary anchorage devices and a maxillary intrusion splint. Am J Orthod Dentofac Orthop. 2014;146(5):594–602.

    Article  Google Scholar 

  5. Jing Y, Han X, Guo Y, Li J, Bai D. Nonsurgical correction of a Class III malocclusion in an adult by miniscrew-assisted mandibular denti tion distalization. Am J Orthod Dentofac Orthop. 2013;143(6):877–87.

    Article  Google Scholar 

  6. Maeda A, Sakoguchi Y, Miyawaki S. Patient with oligodontia treated with a miniscrew for unilateral mesial movement of the maxillary molars and alignment of an impacted third molar. Am J Orthod Dentofac Orthop. 2013;144(3):430–40.

    Article  Google Scholar 

  7. Elshebiny T, Palomo JM, Baumgaertel S. Anatomic assessment of the mandibular buccal shelf for miniscrew insertion in white patients. Am J Orthod Dentofac Orthop. 2018;153(4):505–11.

    Article  Google Scholar 

  8. Nucera R, Lo Giudice A, Bellocchio AM, Spinuzza P, Caprioglio A, Perillo L, Matarese G, Cordasco G. Bone and cortical bone thickness of mandibular buccal shelf for mini-screw insertion in adults. Angle Orthod. 2017;87(5):745–51.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen K, Cao Y. Class III malocclusion treated with distalization of the mandibular dentition with miniscrew anchorage: a 2-year follow-up. Am J Orthod Dentofac Orthop. 2015;148(6):1043–53.

    Article  Google Scholar 

  10. Hosein YK, Smith A, Dunning CE, Tassi A. Insertion torques of self-drilling mini-implants in simulated mandibular bone: assessment of potentia l for implant fracture. Int J Oral Maxillofac Implants. 2016;31(3):e57-64.

    Article  PubMed  Google Scholar 

  11. Wu Y, Xu Z, Tan L, Tan L, Zhao Z, Yang P, Li Y, Tang T, Zhao L. Orthodontic mini-implant stability under continuous or intermittent loading: a histomorphometric and biomechanical analysis. Clin Implant Dent Relat Res. 2015;17(1):163–72.

    Article  PubMed  Google Scholar 

  12. Yi J, Ge M, Li M, Li C, Li Y, Li X, Zhao Z. Comparison of the success rate between self-drilling and self-tapping miniscrews: a systematic review and meta-analysis. Eur J Orthod. 2017;39(3):287–93.

    PubMed  Google Scholar 

  13. Baumgaertel S. Predrilling of the implant site: is it necessary for orthodontic mini-implants? Am J Orthod Dentofacial Orthop. 2010;137(6):825–9.

    Article  PubMed  Google Scholar 

  14. Moon CH, Park HK, Nam JS, Im JS, Baek SH. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofac Orthop. 2010;138(1):51–7.

    Article  Google Scholar 

  15. Jing Z, Wu Y, Jiang W, Zhao L, Jing D, Zhang N, Cao X, Xu Z, Zhao Z. Factors affecting the clinical success rate of miniscrew implants for orthodontic treatment. Int J Oral Maxillofac Implants. 2016;31(4):835–41.

    Article  PubMed  Google Scholar 

  16. Chen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage system s. Clin Oral Implants Res. 2007;18(6):768–75.

    Article  PubMed  Google Scholar 

  17. Chang C, Liu SS, Roberts WE. Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mu cosa or attached gingiva. Angle Orthod. 2015;85(6):905–10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ozdemir F, Tozlu M, Germec-Cakan D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am J Orthod Dentofac Orthop. 2013;143(2):190–6.

    Article  Google Scholar 

  19. Gandhi V, Upadhyay M, Tadinada A, Yadav S. Variability associated with mandibular buccal shelf area width and height in subjects with different growth pattern, sex, and growth status. Am J Orthod Dentofac Orthop. 2021;159(1):59–70.

    Article  Google Scholar 

  20. Aleluia RB, Duplat CB, Crusoé-Rebello I, Neves FS. Assessment of the mandibular buccal shelf for orthodontic anchorage: influence of side, gender and skeletal patterns. Orthod Craniofac Res. 2021;24(Suppl 1):83–91.

    Article  PubMed  Google Scholar 

  21. Vargas EOA, Lopes de Lima R, Nojima LI. Mandibular buccal shelf and infrazygomatic crest thicknesses in patients with different vertical facial heights. Am J Orthod Dentofac Orthop. 2020;158(3):349–56.

    Article  Google Scholar 

  22. Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG. Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofac. 2007;132(4):550–60.

    Article  Google Scholar 

  23. Hilgers ML, Scarfe WC, Scheetz JP, Farman AG. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofac. 2005;128(6):803–11.

    Article  Google Scholar 

  24. Sherrard JF, Rossouw PE, Benson BW, Carrillo R, Buschang PH. Accuracy and reliability of tooth and root lengths measured on cone-beam computed tomographs. Am J Orthod Dentofac. 2010;137(4 Suppl):S100–8.

    Article  Google Scholar 

  25. Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2004;19(2):228–31.

    PubMed  Google Scholar 

  26. Timock AM, Cook V, McDonald T, Leo MC, Crowe J, Benninger BL, Covell DA. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofac. 2011;140(5):734–44.

    Article  Google Scholar 

  27. Veyre-Goulet S, Fortin T, Thierry A. Accuracy of linear measurement provided by cone beam computed tomography to assess bone quantity in the posterior maxilla: a human cadaver study. Clin Implant Dent Relat. 2008;10(4):226–30.

    Article  Google Scholar 

  28. Moreira CR, Sales MA, Lopes PM, Cavalcanti MG. Assessment of linear and angular measurements on three-dimensional cone-beam computed tomographic images. Oral Surg Oral Med. 2009;108(3):430–6.

    Article  Google Scholar 

  29. Horn AJ. Facial height index. Am J Orthod Dentofac Orthop. 1992;102(2):180–6.

    Article  Google Scholar 

  30. Masumoto T, Hayashi I, Kawamura A, Tanaka K, Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod. 2001;23(1):15–23.

    Article  PubMed  Google Scholar 

  31. MartínezPérez JA, Pérez Martin PS. Intraclass correlation coefficient. Med Fam-semergen. 2023;49(3):101907.

    Article  Google Scholar 

  32. Ruquet M, Saliba-Serre B, Tardivo D, Foti B. Estimation of age using alveolar bone loss: forensic and anthropological applications. J Forens Sci. 2015;60(5):1305–9.

    Article  Google Scholar 

  33. Custodio W, Gomes SG, Faot F, Garcia RC, Del Bel Cury AA. Occlusal force, electromyographic activity of masticatory muscles and mandibular flexure of subjects with different facial types. J Appl Oral Sci. 2011;19(4):343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gu YJ, Lu SN, Xia WQ, Zhang T, Shi H, Gao MQ. A study on the thickness of buccal bone in the mandible of different vertical facial type in adults using cone-beam CT. Shanghai Kou Qiang Yi Xue. 2015;24(3):335–7.

    PubMed  Google Scholar 

  35. Escobar-Correa N, Ramírez-Bustamante MA, Sánchez-Uribe LA, Upegui-Zea JC, Vergara-Villarreal P, Ramírez-Ossa DM. Evaluation of mandibular buccal shelf characteristics in the Colombian population: a cone-beam computed tomography study. Korean J Orthod. 2021;51(1):23–31.

    Article  PubMed  Google Scholar 

  36. Zhang R, Chen X, Huang X. The cone-beam CT study on the slope of oblique plane at the mandibular buccal shelf area in 200 cases. Chin J Orthod. 2020;27(3):121–4.

    Google Scholar 

  37. Chen PJ, Lin JJ, Wong YK. Bone thickness of the buccal shelf for orthodontic implant placement. In: Annual meeting of Taiwan Association of Orthodontists; 2009.

  38. Zambrano-De la Peña LS, Aliaga-Del Castillo A, Rodríguez-Cárdenas YA, Ruiz-Mora GA, Arriola-Guillén LE, Guerrero ME. Bucco alveolar bone thickness of mandibular impacted third molars with different inclinations: a CBCT study. Surg Radiol Anat. 2020;42(9):1051–6.

    Article  PubMed  Google Scholar 

  39. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007;22(5):779–84.

    PubMed  Google Scholar 

  40. Rossi M, Bruno G, De Stefani A, Perri A, Gracco A. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. Int Orthod. 2017;15(4):610–24.

    PubMed  Google Scholar 

  41. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofac Orthop. 2006;129(6):721.e7-12.

    Article  Google Scholar 

  42. Swasty D, Lee JS, Huang JC, Maki K, Gansky SA, Hatcher D, Miller AJ. Anthropometric analysis of the human mandibular cortical bone as assessed by cone-beam computed tomography. J Oral Maxillofac Surg. 2009;67(3):491–500.

    Article  PubMed  Google Scholar 

  43. Farnsworth D, Rossouw PE, Ceen RF, Buschang PH. Cortical bone thickness at common miniscrew implant placement sites. Am J Orthod Dentofac Orthop. 2011;139(4):495–503.

    Article  Google Scholar 

  44. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17(1):109–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese Postdoctoral Science Foundation (no. 2018M642620), Qingdao Postdoctoral Applied Research Project, National Natural Science Foundation of China (no. 81700992), Qingdao Key Health Discipline Development Fund, Qingdao Clinical Research Center for Oral Diseases (22-3-7-lczx-7-nsh).

Funding

This work was supported by Chinese Postdoctoral Science Foundation (no. 2018M642620), Qingdao Postdoctoral Applied Research Project, National Natural Science Foundation of China (no. 81700992), Qingdao Key Health Discipline Development Fund, Qingdao Clinical Research Center for Oral Diseases (22-3-7-lczx-7-nsh).

Author information

Authors and Affiliations

Authors

Contributions

XXF: conceptualization, methodology, validation, investigation, writing. HD: methodology, validation, investigation. CHF: methodology, investigation. LP: formal analysis, resources, writing. TX: conceptualization, supervision, administration, funding acquisition. JLL: validation, investigation. JCM: conceptualization, methodology, investigation, resources, supervision, funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cunhui Fan or Chunmiao Jiang.

Ethics declarations

Conflict of interest

The authors declare that we have no competing interests.

Ethics approval and consent to participate

This study was approved by the institutional review board (QYFYwzll26491).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Ding, H., Fan, C. et al. Comparison of mandibular buccal shelf morphology between adolescents and adults with different vertical patterns using CBCT. Oral Radiol 40, 58–68 (2024). https://doi.org/10.1007/s11282-023-00710-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-023-00710-w

Keywords

Navigation