Skip to main content

Advertisement

Log in

The mandibular bone structure in children by fractal dimension and its correlation with pixel intensity values: a pilot study

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

To identify a normal pattern of mandibular trabecular bone in children based on the fractal dimension (FD), and its possible correlation with pixel intensity (PI) values, to facilitate the early diagnosis of possible diseases and/or future bone alterations.

Materials and methods

The 50 panoramic images were selected and divided into two groups, according to the children’s age: 8–9 (Group 1; n = 25) and 6–7 (Group 2; n = 25). For FD and PI analyses, three regions of interest (ROIs) were selected, and their mean values were evaluated for each ROI, according to each group, using the t test for independent samples and the model of generalized estimation equations (GEE). Subsequently, these mean values were correlated by the Pearson test.

Results

Comparing the groups, FD and PI did not differ from each other for any of the measured regions (p > 0.00). It was observed that in the mandible branch (ROI1), FD and PI means were 1.26 ± 0.01 and 81.0 ± 2.50, respectively. In the mandible angle (ROI2), the means were 1.21 ± 0.02 (FD) and 72.8 ± 2.13 (PI); and in the mandible, cortical (ROI3) values of FD = 1.03 ± 0.01 and PI = 91.3 ± 1.75 were obtained. There was no correlation between FD and PI in any of the analyzed ROI (r < 0.285). The FD means of ROI1 and ROI2 did not differ from each other (p = 0.053), but both were different from ROI3 (p < 0.00). All PI values differed from each other (p < 0.00).

Conclusion

The bone trabeculate pattern in 6–9-year-old children presented FD between 1.01 and 1.29. Besides that, there was no significant correlation between FD and PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachrach LK. Consensus and controversy regarding osteoporosis in the pediatric population. Endocr Pract. 2007;13:513–20. https://doi.org/10.4158/EP.13.5.513.

    Article  PubMed  Google Scholar 

  2. Fonseca H, Moreira-Gonçalves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44:37–53. https://doi.org/10.1007/s40279-013-0100-7.

    Article  PubMed  Google Scholar 

  3. Hough JP, Boyd RN, Keating JL. Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics. 2010;125:670–8. https://doi.org/10.1542/peds.2009-0292.

    Article  Google Scholar 

  4. Taguchi A, Suei Y, Ohtsuka M, Otani K, Tanimoto K, Ohtaki M. Usefulness of panoramic radiography in the diagnosis of postmenopausal osteoporosis in women. Width and morphology of inferior cortex of the mandible. Dentomaxillofac Radiol. 1996. https://doi.org/10.1259/dmfr.25.5.9161180.

    Article  PubMed  Google Scholar 

  5. Gosfield E 3rd, Bonner FJ Jr. Evaluating bone mineral density in osteoporosis. Am J Phys Med Rehabil. 2000;79:283–91. https://doi.org/10.1097/00002060-200005000-00011.

    Article  PubMed  Google Scholar 

  6. Choi YJ. Dual-energy x-ray absorptiometry: beyond Bone mineral density determination. Endocrinol Metab. 2016;31:25–30. https://doi.org/10.3803/EnM.2016.31.1.25.

    Article  Google Scholar 

  7. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution -peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian bone strength working group. Curr Osteoporos Rep. 2013;11:136–46. https://doi.org/10.1007/s11914-013-0140-9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007; 37: 1–332. DOI: https://doi.org/10.1016/j.icrp.2007.10.003.

  9. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:628–35. https://doi.org/10.1016/s1079-2104(99)70097-1.

    Article  PubMed  Google Scholar 

  10. Apolinário AC, Sindeaux R, de Souza Figueiredo PT, Guimarães AT, Acevedo AC, Castro LC, et al. Dental panoramic indices and fractal dimension measurements in osteogenesis imperfecta children under pamidronate treatment. Dentomaxillofac Radiol. 2016;45:20150400. https://doi.org/10.1259/dmfr.20150400.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bayrak S, Göller Bulut D, Orhan K, Sinanoğlu EA, Kurşun Çakmak EŞ, Mısırlı M, et al. Evaluation of osseous changes in dental panoramic radiography of thalassemia patients using mandibular indexes and fractal size analysis. Oral Radiol. 2020;36:18–24. https://doi.org/10.1007/s11282-019-00372-7.

    Article  PubMed  Google Scholar 

  12. Saberi BV, Khosravifard N, Nooshmand K, Kajan ZD, Ghaffari ME. Fractal analysis of the trabecular bone pattern in the presence/absence of metal artifact producing objects: Comparison of cone-beam computed tomography with panoramic and periapical radiography. Dentomaxillofac Radiol. 2021;50:20200559. https://doi.org/10.1259/dmfr.20200559.

    Article  Google Scholar 

  13. Tosoni GM, Lurie AG, Cowan AE, Burleson JA. Pixel intensity and fractal analyses: detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:235–41. https://doi.org/10.1016/j.tripleo.2005.08.020.

    Article  PubMed  Google Scholar 

  14. Law AN, Bollen A-M, Chen S-K. Detecting osteoporosis using dental radiographs: a comparison of four methods. J Am Dent Assoc. 1996;127:1734–42. https://doi.org/10.14219/jada.archive.1996.0134.

    Article  PubMed  Google Scholar 

  15. Kato CN, Barra SG, Tavares NP, Amaral TM, Brasileiro CB, Mesquita RA, et al. Use of fractal analysis in dental images: a systematic review. Dentomaxillofac Radiol. 2020;49:20180457. https://doi.org/10.1259/dmfr.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13:31–4. https://doi.org/10.4103/sja.SJA_543_18.

    Article  Google Scholar 

  17. Ada Council on Scientific Affairs. An update on radiographic practices: information and recommendations. J Am Dent Assoc. 2001. https://doi.org/10.14219/jada.archive.2001.0161.

    Article  Google Scholar 

  18. World Health Organization. (2016). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach, 2nd ed. World Health Organization. https://apps.who.int/iris/handle/10665/208825.

  19. ImageJTM Software. Available in: https://imagej.nih.gov/ij/download.html.

  20. Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33:159–74. https://doi.org/10.2307/2529310.

    Article  PubMed  Google Scholar 

  21. Rosado LPL, Barbosa IS, Junqueira RB, Martins A, Verner FS. Morphometric analysis of the mandibular fossa in dentate and edentulous patients: A cone beam computed tomography study. J Prosthet Dent. 2021;125(758):e1-758.e7. https://doi.org/10.1016/j.prosdent.2021.01.014.

    Article  Google Scholar 

  22. Di Stefano DA, Arosio P, Pagnutti S, Vinci R, Gherlone EF. Distribution of Trabecular Bone Density in the Maxilla and Mandible. Implant Dent. 2019;28:340–8. https://doi.org/10.1097/ID.0000000000000893.

    Article  PubMed  Google Scholar 

  23. Fan Y, Penington A, Kilpatrick N, Hardiman R, Schneider P, Clement J, et al. Quantification of mandibular sexual dimorphism during adolescence. J Anat. 2019;234:709–17. https://doi.org/10.1111/joa.12949.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bollen AM, Taguchi A, Hujoel PP, Hollender LG. Fractal dimension on dental radiographs. Dentomaxillofac Radiol. 2001;30:270–5. https://doi.org/10.1038/sj/dmfr/4600630.

    Article  PubMed  Google Scholar 

  25. Dean JA. McDonald and Avery’s Dentistry for the Child and Adolescent (11th edn). Unites States: Elsevier; 2021.

    Google Scholar 

  26. Gumussoy I, Miloglu O, Cankaya E, Bayrakdar IS. Fractal properties of the trabecular pattern of the mandible in chronic renal failure. Dentomaxillofac Radiol. 2016;45:20150389. https://doi.org/10.1259/dmfr.20150389.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gulec M, Tassoker M, Ozcan S, Orhan K. Evaluation of the mandibular trabecular bone in patients with bruxism using fractal analysis. Oral Radiol. 2021;37:36–45. https://doi.org/10.1007/s11282-020-00422-5.

    Article  PubMed  Google Scholar 

  28. Smith TG Jr, Lange GD, Marks WB. Fractal methods and results in cellular morphology–dimensions, lacunarity, and multifractals. J Neurosci Methods. 1996;69:123–36. https://doi.org/10.1016/S0165-0270(96)00080-5.

    Article  PubMed  Google Scholar 

  29. Sánchez I, Uzcátegui G. Fractals in dentistry. J Dent. 2011;39:273–92. https://doi.org/10.1016/j.jdent.2011.01.010.

    Article  PubMed  Google Scholar 

  30. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40:1308–19. https://doi.org/10.1016/j.bone.2007.01.012.

    Article  PubMed  Google Scholar 

  31. Hernandez CJ. How can bone turnover modify bone strength independent of bone mass? Bone. 2008;42:1014–20. https://doi.org/10.1016/j.bone.2008.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66. https://doi.org/10.1016/j.bone.2007.10.021.

    Article  PubMed  Google Scholar 

  33. Hichijo N, Tanaka E, Kawai N, van Ruijven LJ, Langenbach GEJ. Effects of decreased occlusal loading during growth on the Mandibular bone characteristics. PLoS One. 2015;10:e0129290. https://doi.org/10.1371/journal.pone.0129290.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mavropoulos A, Ammann P, Bresin A, Kiliaridis S. Masticatory demands induce region-specific changes in mandibular bone density in growing rats. Angle Orthod. 2005;75:625–30. https://doi.org/10.1043/0003-3219(2005)75[625:MDIRCI]2.0.CO;2.

    Article  PubMed  Google Scholar 

  35. Hutchinson EF, Florentino G, Hoffman J, Kramer B. Micro-CT assessment of changes in the morphology and position of the immature mandibular canal during early growth. Surg Radiol Anat. 2017;39:185–94. https://doi.org/10.1007/s00276-016-1694-x.

    Article  PubMed  Google Scholar 

  36. Hildebolt CF. Osteoporosis and oral bone loss. Dentomaxillofac Radiol. 1997;26:3–15. https://doi.org/10.1038/sj.dmfr.4600226.

    Article  PubMed  Google Scholar 

  37. Suryani IR, Villegas NS, Shujaat S, Grauwe A, Azhari A, Sitam S, et al. Image quality assessment of pre-processed and post-processed digital panoramic radiographs in paediatric patients with mixed dentition. Imaging Sci Dent. 2018;48(4):261–8. https://doi.org/10.5624/isd.2018.48.4.261.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cahn RW. Fractal dimension and fracture. Nature. 1989;338:201–2.

    Article  Google Scholar 

  39. Honda E, et al. A method for determination of fractal dimensions of sialographic images. Invest Radiol. 1991;26:894–901.

    Article  PubMed  Google Scholar 

  40. Domon M, Honda E, Sasaki T: Two dimensional images of fractal sets and their usefulness in images of the methods of dimension measurement. CAR’98, HU Lemke et al eds. Elsevier, 1998

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Augusta Visconti.

Ethics declarations

Conflict of interest

Author Beatriz Fernandes Arrepia, Author Thaiza Gonçalves Rocha, Author Annie Seabra Medeiros, Author Matheus Diniz Ferreira, Author Andrea Fonseca Gonçalves, Author Maria Augusta Visconti declare that they have no conflict of interest.

Ethical approval

All procedures followed were by the ethical standards of the responsible committee on human experimentation (University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrepia, B.F., Rocha, T.G., Medeiros, A.S. et al. The mandibular bone structure in children by fractal dimension and its correlation with pixel intensity values: a pilot study. Oral Radiol 39, 771–778 (2023). https://doi.org/10.1007/s11282-023-00693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-023-00693-8

Keywords

Navigation