Skip to main content

Advertisement

Log in

Radiopacity evaluation of different types of resin restorative materials using a digital radiography system

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of the study was to evaluate and compare the radiopacity of 20 current dental resin composites with digital radiography.

Methods

Ten specimens, 10-mm in diameter and 1-mm thickness, were prepared and radiographed using phosphor plates close to Al step wedges and tooth sections. The mean grey values (MGVs) were measured using an ImageJ software program and converted to equivalent Al thickness. Data were analyzed using one-way analysis of variance (ANOVA) and Tamhane post hoc test (p < 0.05). Correlation between mean radiopacity and filler content (wt% and vol%) of the tested materials was analyzed with linear regression analysis.

Results

The radiopacity of all composites ranged from 1.32 mm Al (Estellite Flow Quick) to 3.41 mm Al (Charisma Classic). All the tested materials, except four restorative materials, had a radiopacity equal or higher than the enamel (p < 0.05). Linear regression revealed low correlation between the radiopacity and filler content of the composite.

Conclusion

Majority of the materials has appropriate radiopacity for dental restorations. There was great variation in radiopacity level, may clinically affect the diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Oztas B, et al. Radiopacity evaluation of composite restorative resins and bonding agents using digital and film x-ray systems. Eur J Dentistry. 2012;6(02):115–22.

    Article  Google Scholar 

  2. Imperiano MT, et al. Comparative radiopacity of four lowviscosity composites. Brazil J Oral Sci. 2007;6(20):1278–82.

    Google Scholar 

  3. Oikarinen K, et al. Visibility of foreign bodies in soft tissue in plain radiographs, computed tomography, magnetic resonance imaging, and ultrasound: an in vitro study. Int J Oral Maxillofac Surg. 1993;22(2):119–24.

    Article  PubMed  Google Scholar 

  4. Bouschlicher M, Cobb D, Boyer D. Radiopacity of compomers, flowable and conventional resin composites for posterior restorations. Oper Dent. 1999;24(1):20–5.

    PubMed  Google Scholar 

  5. Poorterman JH, Aartman IH, Kalsbeek H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Commun Dent Oral Epidemiol. 1999;27(5):331–7.

    Article  Google Scholar 

  6. Mjör, I., The location of clinically diagnosed secondary caries. Quintessence International, 1998. 29 (5).

  7. Shenoy A. Is it the end of the road for dental amalgam? a critical review. J conservative dentistry: JCD. 2008;11(3):99.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roulet J. The problems associated with substituting composite resins for amalgam: a status report on posterior composites. J Dent. 1988;16(3):101–13.

    Article  PubMed  Google Scholar 

  9. Pekkan G. Radiopacity of dental materials: an overview. Avicenna J Dental Res. 2016;8(2):8–8.

    Article  Google Scholar 

  10. Arita, E.S., et al., Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging. The Europeran Journal of Esthetic Dentistry, 2012. 7 (4).

  11. Yaylacı A, Karaarslan ES, Hatırlı H. Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system. Imaging Sci Dentistry. 2021;51(3):261.

    Article  Google Scholar 

  12. Nomoto R, et al. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems. Dent Mater. 2008;24(1):141–7.

    Article  PubMed  Google Scholar 

  13. Haiter-Neto F, et al. A comparison of older and newer versions of intraoral digital radiography systems: diagnosing noncavitated proximal carious lesions. J Am Dent Assoc. 2007;138(10):1353–9.

    Article  PubMed  Google Scholar 

  14. Haak R, et al. Detection of marginal defects of composite restorations with conventional and digital radiographs. Eur J Oral Sci. 2002;110(4):282–6.

    Article  PubMed  Google Scholar 

  15. Pedrosa RF, et al. Influence of materials radiopacity in the radiographic diagnosis of secondary caries: evaluation in film and two digital systems. Dentomaxillofacial Radiology. 2011;40(6):344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Standarization, I.O.f., Dentistry—Polymer‐Based Restorative Materials; ISO 4049‐2009. 2009.

  17. van Dijken JW, Wing KR, Ruyter IE. An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontol Scand. 1989;47(6):401–7.

    Article  PubMed  Google Scholar 

  18. Chan D, et al. Radiopacity of tantalum oxide nanoparticle filled resins. Dent Mater. 1999;15(3):219–22.

    Article  PubMed  Google Scholar 

  19. Tay, F.R. and S.H. Wei, Indirect Posterior Restorations Using a New Chairside Microhybrid Resin Composite System. Journal of Adhesive Dentistry, 2001. 3 (1).

  20. Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Canad Dental Asso. 2003;69(8):516–21.

    Google Scholar 

  21. Rosatto C, et al. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J Dent. 2015;43(12):1519–28.

    Article  PubMed  Google Scholar 

  22. Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25(11):1411–8.

    Article  PubMed  Google Scholar 

  23. Hara AT, Serra MC, Rodrigues AL Jr. Radiopacity of glass-ionomer/composite resin hybrid materials. Braz Dent J. 2001;12(2):85–9.

    PubMed  Google Scholar 

  24. Carvalho-Junior J, et al. Radiopacity of root filling materials using digital radiography. Int Endod J. 2007;40(7):514–20.

    Article  PubMed  Google Scholar 

  25. Lachowski KM, et al. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofacial Radiology. 2013;42(2):20120153.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brennan, J., An introduction to digital radiography in dentistry. Journal of Orthodontics, 2014.

  27. Price C. A method of determining the radiopacity of dental materials and foreign bodies. Oral Surgery, Oral Medicine, Oral Pathology. 1986;62(6):710–8.

    Article  PubMed  Google Scholar 

  28. Gavala S, et al. Radiation dose reduction in direct digital panoramic radiography. Eur J Radiol. 2009;71(1):42–8.

    Article  PubMed  Google Scholar 

  29. van der Stelt PF. Better imaging: the advantages of digital radiography. J Am Dent Assoc. 2008;139:S7–13.

    Article  Google Scholar 

  30. Ergun S, et al. How many times can we use a phosphor plate? A prelim study Dentomaxillofacial Radio. 2009;38(1):42–7.

    Article  Google Scholar 

  31. Gu S, et al. Radiopacity of dental materials using a digital X-ray system. Dent Mater. 2006;22(8):765–70.

    Article  PubMed  Google Scholar 

  32. Schindelin J, et al. The imagej ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kapila R, et al. Radiopacity measurement of restorative resins using film and three digital systems for comparison with ISO 4049: International standard. Bull Tokyo Dent Coll. 2015;56(4):207–14.

    Article  PubMed  Google Scholar 

  34. Hitij T, Fidler A. Radiopacity of dental restorative materials. Clin Oral Invest. 2013;17(4):1167–77.

    Article  Google Scholar 

  35. Yasa B, et al. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci. 2015;57(2):79–85.

    Article  PubMed  Google Scholar 

  36. Watts D, McCabe J. Aluminium radiopacity standards for dentistry: an international survey. J Dent. 1999;27(1):73–8.

    Article  PubMed  Google Scholar 

  37. Schwendicke F, et al. When to intervene in the caries process? An expert Delphi consensus statement. Clin Oral Invest. 2019;23(10):3691–703.

    Article  Google Scholar 

  38. Tveit A, Espelid I. Radiographic diagnosis of caries and marginal defects in connection with radiopaque composite fillings. Dent Mater. 1986;2(4):159–62.

    Article  PubMed  Google Scholar 

  39. Espelid I, et al. Radiopacity of restorations and detection of secondary caries. Dent Mater. 1991;7(2):114–7.

    Article  PubMed  Google Scholar 

  40. Salzedas LMP, Louzada MJQ, Oliveira Filho ABD. Radiopacity of restorative materials using digital images. J Appl Oral Sci. 2006;14(2):147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mjör IA. Clinical diagnosis of recurrent caries. J Am Dent Assoc. 2005;136(10):1426–33.

    Article  PubMed  Google Scholar 

  42. Dukic, W., et al., Radiopacity of composite dental materials using a digital X-ray system. Dental materials journal, 2012: 1201190222–1201190222.

  43. Turgut MD, Attar N, Onen A. Radiopacity of direct esthetic restorative materials. Operative Dentistry-Univer Washington-. 2003;28(5):508–14.

    Google Scholar 

  44. Yeung, A.W.K. The Diagnostic Relevance and Interfaces Covered by Mach Band Effect in Dentistry: An Analysis of the Literature. In Healthcare. 2022. MDPI.

  45. Fonseca RB, et al. Radiodensity of base, liner and luting dental materials. Clin Oral Invest. 2006;10(2):114–8.

    Article  Google Scholar 

  46. Dionysopoulos D, et al. Effect of filler composition of dental composite restorative materials on radiopacity in digital radiographic images. Polym Compos. 2018;39:E351–7.

    Article  Google Scholar 

  47. Tanaka JLO, et al. Comparative analysis of human and bovine teeth: radiographic density. Braz Oral Res. 2008;22:346–51.

    Article  PubMed  Google Scholar 

  48. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6(4):302–18.

    Article  PubMed  Google Scholar 

  49. Ravi, R.K., et al., Dental Composites-A Versatile Restorative Material: An Overview. Indian Journal of Dental Sciences, 2013. 5 (5).

  50. Baldea B, et al. Radiopacity of flowable resin composite. OHDMBSC. 2009;3:38–43.

    Google Scholar 

  51. Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper dent. 2004;29(6):677–84.

    PubMed  Google Scholar 

  52. Soderholm K-J. Leaking of fillers in dental composites. J Dent Res. 1983;62(2):126–30.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors do not have any financial interest in the companies whose materials are included in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyda Gündoğdu.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündoğdu, C., Akgül, S. Radiopacity evaluation of different types of resin restorative materials using a digital radiography system. Oral Radiol 39, 646–653 (2023). https://doi.org/10.1007/s11282-023-00679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-023-00679-6

Keywords

Navigation