Effect of voxel size on detection of fenestration, dehiscence and furcation defects using cone-beam computed tomography

Abstract

Objectives

This study aimed to assess the effect of voxel size on detection of fenestration, dehiscence, and furcation defects using cone-beam computed tomography (CBCT).

Materials and methods

This in vitro, experimental study evaluated 4 sheep skulls with both the maxilla and mandible accompanied by the surrounding soft tissue. Fenestration (n = 30), dehiscence (n = 65), and furcation defects (n = 46; 18 grade I, 25 grade II, and 3 grade III) were randomly created by round and needle burs in both jaws, and 40 areas served as control sites. CBCT scans were obtained with 0.300 and 0.150 mm3 voxel sizes and 8 × 11cm2 field of view (FOV), and were randomly observed by four observers (two oral and maxillofacial radiologists and two periodontists). The kappa values, sensitivity and specificity were calculated for each voxel size and compared using paired t test.

Results

By an increase in image resolution, diagnostic sensitivity increased while specificity decreased. The kappa values for fenestration (0.602–0.623), and grade III furcation defects (0.903–1.00) were optimal (> 0.6), and almost similar for both voxel sizes. The kappa values for dehiscence, and grades I and II furcation defects were unfavorable (< 0.6) and almost similar for both voxel sizes, except for grade I furcation defects, which had a significant difference in kappa values between the two voxel sizes (0.014 and 0.34).

Conclusion

Smaller voxel size had higher sensitivity and lower specificity for detection of all defects except for grade I furcation defects, for which the smaller voxel size had higher sensitivity and higher specificity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996;1(1):821–78. https://doi.org/10.1902/annals.1996.1.1.821.

    Article  PubMed  Google Scholar 

  2. 2.

    Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H. Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2011;139(2):e117–27. https://doi.org/10.1016/j.ajodo.2010.08.016.

    Article  PubMed  Google Scholar 

  3. 3.

    Albandar JM, Rams TE. Global epidemiology of periodontal diseases: an overview. Periodontol. 2000;2002(29):7–10. https://doi.org/10.1034/j.1600-0757.2002.290101.x.

    Article  Google Scholar 

  4. 4.

    Kamburoglu K, Murat S, Kilic C, Yuksel S, Avsever H, Farman A, et al. Accuracy of CBCT images in the assessment of buccal marginal alveolar peri-implant defects: effect of field of view. Dentomaxillofac Radiol. 2014;43(4):20130332. https://doi.org/10.1259/dmfr.20130332.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    de-Azevedo-Vaz SL, Vasconcelos Kde F, Neves FS, Melo SL, Campos PS, Haiter-Neto F. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(1):121–7. https://doi.org/10.1016/j.oooo.2012.10.003.

  6. 6.

    Ding Q, Zhang L, Geraets W, Wu W, Zhou Y, Wismeijer D, et al. Association between peri-implant bone morphology and marginal bone loss: a retrospective study on implant-supported mandibular overdentures. Int J Oral Maxillofac Implants. 2017;32(1):147–55. https://doi.org/10.11607/jomi.4922.

    Article  PubMed  Google Scholar 

  7. 7.

    Jeffcoat MK. Current concepts in periodontal disease testing. J Am Dent Assoc. 1994;125(8):1071–8. https://doi.org/10.14219/jada.archive.1994.0136.

    Article  PubMed  Google Scholar 

  8. 8.

    Reddy MS. Radiographic methods in the evaluation of periodontal therapy. J Periodontol. 1992;63(Suppl 12S):1078–84. https://doi.org/10.1902/jop.1992.63.12s.1078.

    Article  PubMed  Google Scholar 

  9. 9.

    Tyndall DA, Rathore S. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent Clin North Am. 2008;52(4):825–41. https://doi.org/10.1016/j.cden.2008.05.002 ((vii)).

    Article  PubMed  Google Scholar 

  10. 10.

    Tugnait A, Clerehugh V, Hirschmann PN. The usefulness of radiographs in diagnosis and management of periodontal diseases: a review. J Dent. 2000;28(4):219–26. https://doi.org/10.1016/s0300-5712(99)00062-7.

    Article  PubMed  Google Scholar 

  11. 11.

    Braun X, Ritter L, Jervoe-Storm PM, Frentzen M. Diagnostic accuracy of CBCT for periodontal lesions. Clin Oral Investig. 2014;18(4):1229–36. https://doi.org/10.1007/s00784-013-1106-0.

    Article  PubMed  Google Scholar 

  12. 12.

    Mol A. Imaging methods in periodontology. Periodontol. 2000;2004(34):34–48. https://doi.org/10.1046/j.0906-6713.2003.003423.x.

    Article  Google Scholar 

  13. 13.

    Jeffcoat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol. 2000;1995(7):54–68. https://doi.org/10.1111/j.1600-0757.1995.tb00036.x.

    Article  Google Scholar 

  14. 14.

    Meyer MS, Joshipura K, Giovannucci E, Michaud DS. A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes Control. 2008;19(9):895–907. https://doi.org/10.1007/s10552-008-9163-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Vandenberghe B, Jacobs R, Yang J. Diagnostic validity (or acuity) of 2D CCD versus 3D CBCT-images for assessing periodontal breakdown. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(3):395–401. https://doi.org/10.1016/j.tripleo.2007.03.012.

    Article  PubMed  Google Scholar 

  16. 16.

    SD B, A L. 2Dand 3D images generated by cone beam computed tomography (CBCT) for dentomaxillofacial investigations. In: CARS ’98 Proceedings of the 12th international Symposium and Exhibition: Computer Assisted Radiology and Surgery Amsterdam: Elsevier. 1998:792–7.

  17. 17.

    Fuhrmann RA, Wehrbein H, Langen HJ, Diedrich PR. Assessment of the dentate alveolar process with high resolution computed tomography. Dentomaxillofac Radiol. 1995;24(1):50–4. https://doi.org/10.1259/dmfr.24.1.8593909.

    Article  PubMed  Google Scholar 

  18. 18.

    Bayat S, Talaeipour AR, Sarlati F. Detection of simulated periodontal defects using cone-beam CT and digital intraoral radiography. Dentomaxillofac Radiol. 2016;45(6):20160030. https://doi.org/10.1259/dmfr.20160030.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, et al. Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(3):420–5. https://doi.org/10.1016/j.tripleo.2008.05.049.

    Article  PubMed  Google Scholar 

  20. 20.

    Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG. Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop. 2008;134(4):573–82. https://doi.org/10.1016/j.ajodo.2007.11.025.

    Article  PubMed  Google Scholar 

  21. 21.

    Da Silveira PFFM, Oliveira HW, Vizzotto MB, Montagner F, Silveira HL, et al. CBCT-based volume of simulated root resorption—influence of FOV and voxel size. Int Endod J. 2015;48(10):959–65.

    Article  Google Scholar 

  22. 22.

    Kamburoglu K, Murat S, Kolsuz E, Kurt H, Yuksel S, Paksoy C. Comparative assessment of subjective image quality of cross-sectional cone-beam computed tomography scans. J Oral Sci. 2011;53(4):501–8. https://doi.org/10.2334/josnusd.53.501.

    Article  PubMed  Google Scholar 

  23. 23.

    Kolsuz ME, Bagis N, Orhan K, Avsever H, Demiralp KO. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects. Dentomaxillofac Radiol. 2015;44(7):20150070. https://doi.org/10.1259/dmfr.20150070.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Obuchowski NA, Zhou XH. Prospective studies of diagnostic test accuracy when disease prevalence is low. Biostatistics. 2002;3(4):477–92. https://doi.org/10.1093/biostatistics/3.4.477.

    Article  PubMed  Google Scholar 

  25. 25.

    Li J, Fine J. On sample size for sensitivity and specificity in prospective diagnostic accuracy studies. Stat Med. 2004;23:2537–50.

    Article  Google Scholar 

  26. 26.

    Machin D, Campbell MJ, Tan SB, Tan SH Sample Size Tables for Clinical Studies, . Wiley-Blackwell, Chichester, United Kingdom. 2008;Third Edition.

  27. 27.

    Zhou XH, Obuchowski, p.n.A., McClish, D.K. Statistical Methods in Diagnostic Medicine. Wiley-Interscience, New York. 2002.

  28. 28.

    Schork MaW, G. Number of Observations Required for the Comparison of Two CorrelatedProportions. Commun Stat-Simula Computa, 1980;B9(4), 349–57.

  29. 29.

    Cohen. A Coefficient of Agreement for Nominal Scales Educ Psychol Meas. SAGE Publications Inc. 1960;20:37–46.

  30. 30.

    Fleiss JL, Levin B, Paik MC, Statistical Methods for Rates and proportions. . New YorkWily. 2003;3rd ed.

  31. 31.

    Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30(7):1285–92. https://doi.org/10.3174/ajnr.A1654.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Angelopoulos C, Scarfe WC, Farman AG. A comparison of maxillofacial CBCT and medical CT. Atlas Oral Maxillofac Surg Clin North Am. 2012;20(1):1–17. https://doi.org/10.1016/j.cxom.2011.12.008.

    Article  PubMed  Google Scholar 

  33. 33.

    Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. J Digit Imaging. 2013;26(4):813–20. https://doi.org/10.1007/s10278-012-9562-7.

    Article  PubMed  Google Scholar 

  34. 34.

    Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol. 2009;30(6):1088–95. https://doi.org/10.3174/ajnr.A1653.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Icen M, Orhan K, Seker C, Geduk G, Cakmak Ozlu F, Cengiz MI. Comparison of CBCT with different voxel sizes and intraoral scanner for detection of periodontal defects: an in vitro study. Dentomaxillofac Radiol. 2020. https://doi.org/10.1259/dmfr.20190197.

    Article  PubMed  Google Scholar 

  36. 36.

    Bagis N, Eren H, Kolsuz ME, Kurt MH, Avsever H, Orhan K. Comparison of the burr and chemically induced periodontal defects using different field-of-view sizes and voxel resolutions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(3):260–7. https://doi.org/10.1016/j.oooo.2017.11.010.

    Article  PubMed  Google Scholar 

  37. 37.

    de Faria VK, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, Silva MA. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol. 2012;41(1):64–9. https://doi.org/10.1259/dmfr/13676777.

    Article  Google Scholar 

  38. 38.

    de Faria VKEK, Rodrigues CD, Estrela C, de Sousa TO, Silva MA. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol. 2012;41(1):64–9.

    Article  Google Scholar 

  39. 39.

    Kamburoglu K, Eres G, Akgun C, Yeta EN, Gulen O, Karacaoglu F. Effect of voxel size on accuracy of cone beam computed tomography-aided assessment of periodontal furcation involvement. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(5):644–50. https://doi.org/10.1016/j.oooo.2015.07.030.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zahra Alizadeh Tabari, Dr. Mina Taheri, and Dr. Golshan Jamali for their sincere cooperation in the conduction of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Eftekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 787 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eftekhar, M., Kaviani, H., Rouzmeh, N. et al. Effect of voxel size on detection of fenestration, dehiscence and furcation defects using cone-beam computed tomography. Oral Radiol (2021). https://doi.org/10.1007/s11282-020-00508-0

Download citation

Keywords

  • Cone-beam computed tomography
  • Fenestration
  • Dehiscence
  • Furcation defects
  • Voxel size