Skip to main content

Advertisement

Log in

Clinical guidelines for dental cone-beam computed tomography

  • Review Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Dental cone-beam computed tomography (CBCT) received regulatory approval in Japan in 2000 and has been widely used since being approved for coverage by the National Health Insurance system in 2012. This imaging technique allows dental practitioners to observe and diagnose lesions in the dental hard tissue in three dimensions (3D). When performing routine radiography, the examination must be justified, and optimal protection should be provided according to the ALARA (as low as reasonably achievable) principles laid down by the International Commission on Radiological Protection. Dental CBCT should be performed in such a way that the radiation exposure is minimized and the benefits to the patient are maximized. There is a growing demand for widespread access to cutting-edge health care through Japan’s universal health insurance system. However, at the same time, people want our limited human, material, and financial resources to be used efficiently while providing safe health care at the least possible cost to society. Japan’s aging population is expected to reach a peak in 2025, when most of the baby boomer generation will be aged 75 years or older. Comprehensive health care networks are needed to overcome these challenges. Against this background, we hope that this text will contribute to the nation’s oral health by encouraging efficient use of dental CBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hounsfield G. Computerized transverse axial scanning (tomography) Part 1. Description of system. Br J Radiol. 1973;46:1016–22.

    PubMed  Google Scholar 

  2. Robb RA, Greenleaf JF, Ritman EL, Johnson SA, Sjostrand JD, Herman GT, et al. Three-dimensional visualization of the intact thorax and contents: a technique for cross-sectional reconstruction from multiplanar X-ray views. Comput Biomed Res. 1974;7:395–419.

    PubMed  Google Scholar 

  3. Robb RA. The dynamic spatial reconstructor: an X-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans Med Imaging. 1982;1:122–33.

    Google Scholar 

  4. Toyofuku F, Konishi K, Kanda S. Fluoroscopic computed tomography: an attempt at 3-D imaging of teeth and jaw bones. Oral Radiol. 1986;2:9–13.

    Google Scholar 

  5. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.

    PubMed  Google Scholar 

  6. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28:245–8.

    PubMed  Google Scholar 

  7. Lennon S, Patel S, Foschi F, Wilson R, Davies J, Mannocci F. Diagnostic accuracy of limited-volume cone-beam computed tomography in the detection of periapical bone loss: 360° scans versus 180° scans. Int Endod J. 2011;44:1118–27. https://doi.org/10.1111/j.1365-2591.2011.01930.x.

    PubMed  Google Scholar 

  8. Arnheiter C, Scarfe WC, Farman AG. Trends in maxillofacial cone-beam computed tomography usage. Oral Radiol. 2006;22:80–5. https://doi.org/10.1007/s11282-006-0055-6.

    Google Scholar 

  9. Davies J, Johnson B, Drage N. Effective doses from cone beam CT investigation of the jaws. Dentomaxillofac Radiol. 2012;41:30–6. https://doi.org/10.1259/dmfr/30177908.

    PubMed  PubMed Central  Google Scholar 

  10. Silva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop. 2008;133:640.e1–5. https://doi.org/10.1016/j.ajodo.2007.11.019.

    Google Scholar 

  11. Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol. 2008;37:309–18. https://doi.org/10.1259/dmfr/16770531.

    PubMed  Google Scholar 

  12. Lofthag-Hansen S, Thilander-Klang A, Ekestubbe A, Helmrot E, Gröndahl K. Calculating effective dose on a cone beam computed tomography device: 3D Accuitomo and 3D Accuitomo FPD. Dentomaxillofac Radiol. 2008;37:72–9. https://doi.org/10.1259/dmfr/60375385.

    PubMed  Google Scholar 

  13. Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol. 2009;38:367–78. https://doi.org/10.1259/dmfr/15779208.

    PubMed  Google Scholar 

  14. Hirata T, Inoue K, Shigemori S, Matsuzaki M, Inatomi K. Estimation of exposure dose on MDCT examination—the measurement of organ dose and effective dose by anthropomorphic phantom. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010;66:901–10 (Japanese).

    PubMed  Google Scholar 

  15. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81:267–71. https://doi.org/10.1016/j.ejrad.2010.11.028.

    PubMed  Google Scholar 

  16. Rottke D, Patzelt S, Poxleitner P, Schulze D. Effective dose span of ten different cone beam CT devices. Dentomaxillofac Radiol. 2013;42:20120417. https://doi.org/10.1259/dmfr.20120417.

    PubMed  PubMed Central  Google Scholar 

  17. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, et al. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44:20140197. https://doi.org/10.1259/dmfr.20140197.

    PubMed  Google Scholar 

  18. Hirsch E, Wolf U, Heinicke F, Silva MA. Dosimetry of the cone beam computed tomography Veraviewepocs 3D compared with the 3D Accuitomo in different fields of view. Dentomaxillofac Radiol. 2008;37:268–73. https://doi.org/10.1259/dmfr/23424132.

    PubMed  Google Scholar 

  19. Araki K, Patil S, Endo A, Okano T. Dose indices in dental cone beam CT and correlation with dose-area product. Dentomaxillofac Radiol. 2013;42:20120362. https://doi.org/10.1259/dmfr.20120362.

    PubMed  PubMed Central  Google Scholar 

  20. Horner K. Cone-beam computed tomography: time for an evidence-based approach. Prim Dent J. 2013;2:22–31.

    PubMed  Google Scholar 

  21. Okano T, Matsuo A, Gotoh K, Yokoi M, Hirukawa A, Okumura S, et al. Comparison of absorbed and effective dose from two dental cone beam computed tomography scanners. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2012;68:216–25 (Japanese).

    PubMed  Google Scholar 

  22. Endo A, Katoh T, Vasudeva SB, Kobayashi I, Okano T. A preliminary study to determine the diagnostic reference level using dose-area product for limited-area cone beam CT. Dentomaxillofac Radiol. 2013;42:20120097. https://doi.org/10.1259/dmfr.20120097.

    PubMed  PubMed Central  Google Scholar 

  23. Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc. 2008;139:1237–43. https://doi.org/10.14219/jada.archive.2008.0339.

    PubMed  Google Scholar 

  24. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics—a review. Int Endod J. 2015;48:3–15. https://doi.org/10.1111/iej.12270.

    PubMed  Google Scholar 

  25. Gurtu A, Aggarwal A, Mohan S, Singhal A, Bansal R, Agnihotri K. CBCT: a revolutionary diagnostic aid for endodontic dilemmas. Miner Stomatol. 2014;63:325–31.

    Google Scholar 

  26. American Academy of Oral and Maxillofacial Radiology. Clinical recommendations regarding use of cone beam computed tomography in orthodontics [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:238–57. https://doi.org/10.1016/j.oooo.2013.06.002.

    Google Scholar 

  27. Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG. Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J. 2012;57(Suppl 1):46–60. https://doi.org/10.1111/j.1834-7819.2011.01657.x.

    PubMed  Google Scholar 

  28. Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S. Application of three-dimensional computed tomography in craniofacial clinical practice and research. Aust Dent J. 2014;59(Suppl 1):174–85. https://doi.org/10.1111/adj.12154.

    PubMed  Google Scholar 

  29. Halperin-Sternfeld M, Machtei EE, Balkow C, Horwitz J. Patient movement during extraoral radiographic scanning. Oral Radiol. 2016;32:40–7. https://doi.org/10.1007/s11282-015-0208-6.

    Google Scholar 

  30. Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, Jacobs R, et al. Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol. 2012;85:153–60. https://doi.org/10.1259/bjr/19389412.

    PubMed  PubMed Central  Google Scholar 

  31. Al Najjar A, Colosi D, Dauer LT, Prins R, Patchell G, Branets I, et al. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units. Am J Orthod Dentofacial Orthop. 2013;143:784–92. https://doi.org/10.1016/j.ajodo.

    PubMed  Google Scholar 

  32. Aps JK. Cone beam computed tomography in paediatric dentistry: overview of recent literature. Eur Arch Paediatr Dent. 2013;14:131–40. https://doi.org/10.1007/s40368-013-0029-4.

    PubMed  Google Scholar 

  33. Shin HS, Nam KC, Park H, Choi HU, Kim HY, Park CS. Effective doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry. Dentomaxillofac Radiol. 2014;43:20130439. https://doi.org/10.1259/dmfr.20130439.

    PubMed  PubMed Central  Google Scholar 

  34. Hidalgo Rivas JA, Horner K, Thiruvenkatachari B, Davies J, Theodorakou C. Development of a low-dose protocol for cone beam CT examinations of the anterior maxilla in children. Br J Radiol. 2015;88:20150559. https://doi.org/10.1259/bjr.20150559.

    PubMed  PubMed Central  Google Scholar 

  35. Choi E, Ford NL. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms. Dentomaxillofac Radiol. 2015;44:20150018. https://doi.org/10.1259/dmfr.20150018.

    PubMed  PubMed Central  Google Scholar 

  36. Tanimoto H, Arai Y. The effect of voxel size on image reconstruction in cone-beam computed tomography. Oral Radiol. 2009;25:149–53. https://doi.org/10.1007/s11282-009-0019-8.

    Google Scholar 

  37. Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015;44:20150078. https://doi.org/10.1259/dmfr.20150078.

    PubMed  PubMed Central  Google Scholar 

  38. Hashem D, Brown JE, Patel S, Mannocci F, Donaldson AN, Watson TF, et al. An in vitro comparison of the accuracy of measurements obtained from high- and low-resolution cone-beam computed tomography scans. J Endod. 2013;39:394–7. https://doi.org/10.1016/j.joen.2012.11.017.

    PubMed  Google Scholar 

  39. Al-Nuaimi N, Patel S, Foschi F, Mannocci F. The detection of simulated periapical lesions in human dry mandibles with cone beam computed tomography—a dose reduction study. Int Endod J. 2016;49:1095–104. https://doi.org/10.1111/iej.12565.

    PubMed  Google Scholar 

  40. Alabdeen EHZ. Accuracy of half-exposure time in cone-beam computed tomography imaging for the detection of surface osseous changes in the temporomandibular joint. Oral Radiol. 2017:33;124–32. https://doi.org/10.1007/s11282-016-0256-6.

    Google Scholar 

  41. Watanabe H, Wagatsuma T, Nomura Y, Honda E, Kurabayashi T. Spatial resolution of FineCube, a newly developed cone-beam computed tomography system. Oral Radiol. 2010;26:56–60. https://doi.org/10.1007/s11282-009-0032-y.

    Google Scholar 

  42. Ball RL, Barbizam JV, Cohenca N. Intraoperative endodontic applications of cone-beam computed tomography. J Endod. 2013;39:548–57. https://doi.org/10.1016/j.joen.2012.11.038.

    PubMed  Google Scholar 

  43. Bechara B, McMahan CA, Noujeim M, Faddoul T, Moore WS, Teixeira FB, et al. Comparison of cone beam CT scans with enhanced photostimulated phosphor plate images in the detection of root fracture of endodontically treated teeth. Dentomaxillofac Radiol. 2013;42:20120404. https://doi.org/10.1259/dmfr.20120404.

    PubMed  PubMed Central  Google Scholar 

  44. Vizzotto MB, Silveira PF, Arús NA, Montagner F, Gomes BP, da Silveira HE. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling. Int Endod J. 2013;46:870–6. https://doi.org/10.1111/iej.12075.

    PubMed  Google Scholar 

  45. Jaju PP, Jaju SP. Cone-beam computed tomography: time to move from ALARA to ALADA. Imaging Sci Dent. 2015;45:263–5. https://doi.org/10.5624/isd.2015.45.4.263.

    PubMed  PubMed Central  Google Scholar 

  46. European Commission. Radiation protection No 172. Cone beam CT for dental and maxillofacial radiology (Evidence based guidelines). Luxembourg: European Commission Directorate-General for Energy; 2012. [Updated 2014 Feb 24]. http://www.sedentexct.eu/files/radiation_protection_172.pdf. Accessed 14 Jan 2016

  47. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35:219–26.

    PubMed  Google Scholar 

  48. Okano T, Harata Y, Sugihara Y, Sakaino R, Tsuchida R, Iwai K, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol. 2009;38:79–85. https://doi.org/10.1259/dmfr/14769929.

    PubMed  Google Scholar 

  49. Kawai T, Asaumi R, Sato I, Kumazawa Y, Yosue T. Observation of the retromolar foramen and canal of the mandible: a CBCT and macroscopic study. Oral Radiol. 2012;28:10–4. https://doi.org/10.1007/s11282-011-0074-9.

    Google Scholar 

  50. Kawai T, Asaumi R, Sato I, Yoshida S, Yosue T. Classification of the lingual foramina and their bony canals in the median region of the mandible: cone beam computed tomography observations of dry Japanese mandibles. Oral Radiol. 2007;23:42–8. https://doi.org/10.1007/s11282-007-0064-0.

    Google Scholar 

  51. Naitoh M, Nakahara K, Suenaga Y, Gotoh K, Kondo S, Ariji E. Variations of the bony canal in the mandibular ramus using cone-beam computed tomography. Oral Radiol. 2010;26:36–40. https://doi.org/10.1007/s11282-009-0030-0.

    Google Scholar 

  52. Kajan ZD, Salari A. Presence and course of the mandibular incisive canal and presence of the anterior loop in cone beam computed tomography images of an Iranian population. Oral Radiol. 2012;28:55–61. https://doi.org/10.1007/s11282-012-0084-2.

    Google Scholar 

  53. Tanaka R, Hayashi T, Ohshima H, Ida-Yonemochi H, Kenmotsu S, Ike M. CT anatomy of the anterior superior alveolar nerve canal: a macroscopic and microscopic study. Oral Radiol. 2011;27:93–7. https://doi.org/10.1007/s11282-011-0067-8.

    Google Scholar 

  54. Matsumoto K, Araki M, Honda K. Bilateral absence of the mental foramen detected by cone-beam computed tomography. Oral Radiol. 2013;29:198–201. https://doi.org/10.1007/s11282-012-0117-x.

    Google Scholar 

  55. Asaumi R, Kawai T, Sato I, Yoshida S, Yosue T. Three-dimensional observations of the incisive canal and the surrounding bone using cone-beam computed tomography. Oral Radiol. 2010;26:20–8. https://doi.org/10.1007/s11282-010-0039-4.

    Google Scholar 

  56. Salinas-Goodier C, Manchón Á, Rojo R, Coquerelle M, Sammartino G, Prados-Frutos JC. Prevalence and location of accessory foramina in the human mandible. Oral Radiol. 2016;32:72–8. https://doi.org/10.1007/s11282-015-0212-x.

    Google Scholar 

  57. Castro MAA, Vich MOL, Abreu MHG, Mesquita RV. Case–control study of mandibular canal branching and tooth-related inflammatory lesions. Oral Radiol. 2017. https://doi.org/10.1007/s11282-017-0305-9.

    Google Scholar 

  58. American Dental Association Council on Scientific Affairs. The use of cone-beam computed tomography in dentistry: an advisory statement from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2012;143:899–902.

    Google Scholar 

  59. Health Protection Agency. Guidance on the safe use of dental cone beam CT (computed tomography) equipment. HPA-CRCE-010. Chilton: Health Protection Agency; 2010.

    Google Scholar 

  60. White SC, Scarfe WC, Schulze RK, Lurie AG, Douglass JM, Farman AG, et al. The Image Gently in Dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:257–61. https://doi.org/10.1016/j.oooo.2014.06.001.

    PubMed  Google Scholar 

  61. Araki M, Hashimoto K, Kawashima S, Matsumoto K, Akiyama Y. Radiographic features of enostosis determined with limited cone-beam computed tomography in comparison with rotational panoramic radiography. Oral Radiol. 2006;22:27–33. https://doi.org/10.1007/s11282-006-0044-9.

    Google Scholar 

  62. Sezgin ÖS, Kayipmaz S. Trifid mandibular condyle. Oral Radiol. 2009;25:146–8. https://doi.org/10.1007/s11282-009-0023-z.

    Google Scholar 

  63. Ono M, Shimizu O, Ueda K, Hashimoto J, Shiratsuchi H, Yonehara Y, et al. A case of true concrescence diagnosed with cone-beam CT and in vivo micro-CT. Oral Radiol. 2010;26:106–9. https://doi.org/10.1007/s11282-010-0043-8.

    Google Scholar 

  64. Metzler P, Zemann W, Lübbers H-T, Guggenberger R, Lüssi A, Obwegeser JA, et al. Bone mineral density measurements performed by cone-beam computed tomography in the bisphosphonate-related osteonecrosis-affected jaw. Oral Radiol. 2012;28:101–8. https://doi.org/10.1007/s11282-012-0093-1.

    Google Scholar 

  65. Alkhader M, Al-Sadhan R, Al-Shawaf R. Cone-beam computed tomography findings of temporomandibular joints with osseous abnormalities. Oral Radiol. 2012;28:82–6. https://doi.org/10.1007/s11282-012-0094-0.

    Google Scholar 

  66. Matsumoto K, Sawada K, Kameoka S, Yonehara Y, Honda K. Cone-beam computed tomography for the diagnosis of mandibular condylar fractures: 11 case reports. Oral Radiol. 2013;29:80–6. https://doi.org/10.1007/s11282-012-0100-6.

    Google Scholar 

  67. Ertas ET, Atýcý MY, Kalabalýk F, Ince O. An unusual case of double idiopathic ramus-related Stafne bone cavity. Oral Radiol. 2013;29:193–7. https://doi.org/10.1007/s11282-012-0121-1.

    Google Scholar 

  68. Chen C-H, Wang C-K, Lin L-M, Huang Y-D, Geist JR, Chen Y-K. Retrospective comparison of the frequency, distribution, and radiographic features of osteosclerosis of the jaws between Taiwanese and American cohorts using cone-beam computed tomography. Oral Radiol. 2014;30:53–63. https://doi.org/10.1007/s11282-013-0139-z.

    Google Scholar 

  69. Mochizuki N, Sugino N, Ninomiya T, Yoshinari N, Udagawa N, Taguchi A. Association of cortical shape of the mandible on panoramic radiographs with mandibular trabecular bone structure in Japanese adults: a cone-beam CT-image analysis. Oral Radiol. 2014;30:160–7. https://doi.org/10.1007/s11282-013-0155-z.

    Google Scholar 

  70. Çaǧayan F, Sümbüllü MA, Akgül HM. Associations between the articular eminence inclination and condylar bone changes, condylar movements, and condyle and fossa shapes. Oral Radiol. 2014;30:84–91. https://doi.org/10.1007/s11282-013-0149-x.

    Google Scholar 

  71. Sekerci AE, Sisman Y. Bilateral anterior Stafne bone defect mimicking radicular cyst: report of a rare case with a review of the literature. Oral Radiol. 2014;30:115–22. https://doi.org/10.1007/s11282-013-0133-5.

    Google Scholar 

  72. Cura N, Hanttash A, Inceoglu B, Orhan K, Mine A, Oncul T. Dentigerous cysts in four quadrants of a nonsyndromic patient: case report and literature review. Oral Radiol. 2015;31:49–58. https://doi.org/10.1007/s11282-014-0171-7.

    Google Scholar 

  73. Demirtas O, Harorli A. Evaluation of the maxillary third molar position and its relationship with the maxillary sinus: a CBCT study. Oral Radiol. 2016;32:173–9. https://doi.org/10.1007/s11282-015-0228-2.

    Google Scholar 

  74. Loncarevic S, Brajkovic D, Vukomanovic-Djurdjevic B, Kanjevac T, Vasovic M. Evaluation of the maxillary third molar position and its relationship with the maxillary sinus: a CBCT study. Oral Radiol. 2016;32:136–42. https://doi.org/10.1007/s11282-015-0223-7.

    Google Scholar 

  75. Kasikcioglu A, Gulsahi A. Relationship between maxillary sinus pathologies and maxillary posterior tooth periapical pathologies. Oral Radiol. 2016;32:180–6. https://doi.org/10.1007/s11282-015-0231-7.

    Google Scholar 

  76. Al-Ekrish AA. Alorainy IA. Apparent discontinuity of the roof of the glenoid fossa on cone-beam computed tomography images of an asymptomatic temporomandibular joint. Oral Radiol. 2016;32:9–13. https://doi.org/10.1007/s11282-015-0207-7.

    Google Scholar 

  77. Pinares J, Urzúa R. Proposed radiographic protocol for central superior mandibular condyle dislocation into the middle cranial fossa: apropos of a case. Oral Radiol. 2016;32:191–4. https://doi.org/10.1007/s11282-015-0229-1.

    Google Scholar 

  78. Çkur B, Bayrakdar IS. No proven correlations between bone quality and degenerative bone changes in the mandibular condyle and articular eminence in temporomandibular joint dysfunction. Oral Radiol. 2016;32:33–9. https://doi.org/10.1007/s11282-015-0206-8.

    Google Scholar 

  79. Avsever H, Gunduz K, Karakoç O, Akyol M, Orhan K. Incidental findings on cone-beam computed tomographic images: paranasal sinus findings and nasal septum variations. Oral Radiol. https://doi.org/10.1007/s11282-017-0283-y.

  80. Liu Y, Xiao Y, Wang H, Hu D, Han X. Clinical and radiological analysis of osteochondromas of the mandible using cone-beam computed tomography. Oral Radiol. 2017;33:8–15. https://doi.org/10.1007/s11282-016-0238-8.

    Google Scholar 

  81. Delantoni A, Lyroudia K, Rafailidis V, Chryssogonidis I. Pseudohypoparathyroidism diagnosed in adulthood: maxillofacial clinical and radiographic findings. Oral Radiol. 2017;33:153–6. https://doi.org/10.1007/s11282-016-0254-8.

    Google Scholar 

  82. Yasa Y, Akgül HM. Comparative cone-beam computed tomography evaluation of the osseous morphology of the temporomandibular joint in temporomandibular dysfunction patients and asymptomatic individuals. Oral Radiol. 2017. https://doi.org/10.1007/s11282-017-0279-7.

    Google Scholar 

  83. Yildirim E, Ciftci ME, Kamak G, Aktan AM. Evaluation of the relationship between maxillary sinus floor position and maxillary sinusitis using cone beam computed tomography. Oral Radiol. 2017;33:16–22. https://doi.org/10.1007/s11282-016-0241-0.

    Google Scholar 

  84. Carrafiello G, Dizonno M, Colli V, Strocchi S, Pozzi Taubert S, Leonardi A, et al. Comparative study of jaws with multislice computed tomography and cone-beam computed tomography. Radiol Med. 2010;115:600–11. https://doi.org/10.1007/s11547-010-0520-5.

    PubMed  Google Scholar 

  85. Gulsahi A, Ates U, Tirali RE, Cehreli SB. Use of cone-beam computed tomography in diagnosis of an otherwise undetected periapical lesion in an anomalous tooth. Oral Radiol. 2014;30:111–4. https://doi.org/10.1007/s11282-013-0130-8.

    Google Scholar 

  86. Pedemonte E, Cabrera C, Torres A, Jacobs R, Harnisch A, Ramírez V, et al. Root and canal morphology of mandibular premolars using cone-beam computed tomography in a Chilean and Belgian subpopulation: a cross-sectional study. Oral Radiol. 2017. https://doi.org/10.1007/s11282-017-0297-5.

    Google Scholar 

  87. Dillenseger J-P, Gros C-I, Sayeh A, Rasamimanana J, Lawniczak F, Leminor J-M, et al. Image quality evaluation of small FOV and large FOV CBCT devices for oral and maxillofacial radiology. Dentomaxillofac Radiol. 2017;46:20160285. https://doi.org/10.1259/dmfr.20160285.

    PubMed  Google Scholar 

  88. Elkhateeb SM, Torgersen GR, Arnout EA. Image quality assessment of clinically-applied CBCT protocols using a QAT phantom. Dentomaxillofac Radiol. 2016;44:20150078. https://doi.org/10.1259/dmfr.20150078.

    Google Scholar 

  89. Neves FS, Freitas DQ, Campos PS, Ekestubbe A, Lofthag-Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. J Endod. 2014;40:1530–6. https://doi.org/10.1016/j.joen.2014.06.012.

    PubMed  Google Scholar 

  90. Goren AD, Prins RD, Dauer LT, Quinn B, Al-Najjar A, Faber RD, et al. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom. Dentomaxillofac Radiol. 2013;42:20120260. https://doi.org/10.1259/dmfr.20120260.

    PubMed  PubMed Central  Google Scholar 

  91. Hidalgo A, Davies J, Horner K, Theodorakou C. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom. Dentomaxillofac Radiol. 2015;44:20140285. https://doi.org/10.1259/dmfr.20140285.

    PubMed  Google Scholar 

  92. Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA. Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol. 2017;46:20160215. https://doi.org/10.1259/dmfr.20160215.

    PubMed  Google Scholar 

  93. Matzen LH, Wenzel A. Efficacy of CBCT for assessment of impacted mandibular third molars: a review—based on a hierarchical model of evidence. Dentomaxillofac Radiol. 2015;44:20140189. https://doi.org/10.1259/dmfr.20140189.

    PubMed  Google Scholar 

  94. Şekerci AE, Şişman Y. Comparison between panoramic radiography and cone-beam computed tomography findings for assessment of the relationship between impacted mandibular third molars and the mandibular canal. Oral Radiol. 2014;30:170–8. https://doi.org/10.1007/s11282-013-0158-9.

    Google Scholar 

  95. Neves FS, Pontual AA, Campos PSF, Frazão MAG, de Almeida SM, Ramos-Perez FMM. Radicular dens invaginatus in a mandibular premolar: cone-beam computed tomography findings of a rare anomaly. Oral Radiol. 2013;29:70–3. https://doi.org/10.1007/s11282-012-0101-5.

    Google Scholar 

  96. Różyło TK, Różyło-Kalinowska I, Piskórz M. Cone-beam computed tomography for assessment of dens invaginatus in the Polish population. Oral Radiol. 2017. https://doi.org/10.1007/s11282-017-0295-7.

    PubMed  PubMed Central  Google Scholar 

  97. Mirmohammadi H, Mahdi L, Partovi P, Khademi A, Shemesh H, Hassan B. Accuracy of cone-beam computed tomography in the detection of a second mesiobuccal root canal in endodontically treated teeth: an ex vivo study. J Endod. 2015;41:1678–81. https://doi.org/10.1016/j.joen.2015.06.011.

    PubMed  Google Scholar 

  98. Gunduz K, Avsever H, Orhan K, Çelenk P, Ozmen B, Cicek R, et al. Comparison of intraoral radiography and cone-beam computed tomography for the detection of vertical root fractures: an in vitro study. Oral Radiol. 2013;29:6–12. https://doi.org/10.1007/s11282-012-0098-9.

    Google Scholar 

  99. Iikubo M, Kamio T, Hashimoto N, Nishioka T, Wakoh M, Sano T, et al. Comparison of bisecting and parallel intraoral radiography and cone-beam computed tomography for detecting various horizontal angle root fractures. Oral Radiol. 2015;31:173–80. https://doi.org/10.1007/s11282-015-0201-0.

    Google Scholar 

  100. Larheim TA, Abrahamsson A-K, Kristensen M, Arvidsson LZ. CBCT special issue: review article. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol. 2015;44:20140235. https://doi.org/10.1259/dmfr.20140235.

    PubMed  Google Scholar 

  101. Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG, Mallya SM. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofacial Orthop. 2011;140:e25–e30. https://doi.org/10.1016/j.ajodo.2011.03.012.

    PubMed  Google Scholar 

  102. Suter VG, Sendi P, Reichart PA, Bornstein MM. The nasopalatine duct cyst: an analysis of the relation between clinical symptoms, cyst dimensions, and involvement of neighboring anatomical structures using cone beam computed tomography. J Oral Maxillofac Surg. 2011;69:2595–603. https://doi.org/10.1016/j.joms.2010.11.032.

    PubMed  Google Scholar 

  103. Dawood A, Brown J, Sauret-Jackson V, Purkayastha S. Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site. Dentomaxillofac Radiol. 2012;41:70–4. https://doi.org/10.1259/dmfr/16421849.

    PubMed  PubMed Central  Google Scholar 

  104. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29 Suppl:55–77. https://doi.org/10.11607/jomi.2014suppl.g1.4.

    PubMed  Google Scholar 

  105. Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg. 2013;4:2–6. https://doi.org/10.4103/0975-5950.117811.

    PubMed  PubMed Central  Google Scholar 

  106. Orhan K, Icen M, Aksoy S, Ozan O, Berberoglu A. Cone-beam CT evaluation of morphology, location, and course of mandibular incisive canal: considerations for implant treatment. Oral Radiol. 2014;30:64–75. https://doi.org/10.1007/s11282-013-0138-0.

    Google Scholar 

  107. Landin M, Jadhav A, Yadav S, Tadinada A. A comparative study between currently used methods and small volume-cone beam tomography for surgical placement of mini implants. Angle Orthod. 2015;85:446–53. https://doi.org/10.2319/042214-298.1.

    PubMed  Google Scholar 

  108. Ambu E, Fimiani M, Vigna M, Grandini S. Use of bioactive materials and limited FOV CBCT in the treatment of a replanted permanent tooth affected by inflammatory external root resorption: a case report. Eur J Paediatr Dent. 2017;18:51–5. https://doi.org/10.23804/ejpd.2017.18.01.11.

    PubMed  Google Scholar 

  109. Honda K, Larheim TA, Johannessen S, Arai Y, Shinoda K, Westesson PL. Ortho cubic super-high resolution computed tomography: a new radiographic technique with application to the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:239–43.

    PubMed  Google Scholar 

  110. Honda K, Matumoto K, Kashima M, Takano Y, Kawashima S, Arai Y. Single air contrast arthrography for temporomandibular joint disorder using limited cone beam computed tomography for dental use. Dentomaxillofac Radiol. 2004;33:271–3. https://doi.org/10.1259/dmfr/50972902.

    PubMed  Google Scholar 

  111. Dalessandri D, Laffranchi L, Tonni I, Zotti F, Piancino MG, Paganelli C, et al. Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report. Head Face Med. 2011;7:6. https://doi.org/10.1186/1746-160X-7-6.

    PubMed  PubMed Central  Google Scholar 

  112. Kapila SD, Nervina JM. CBCT special issue: review article. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44:0140282. https://doi.org/10.1259/dmfr.20140282.

    Google Scholar 

  113. Suomalainen A, Åberg T, Rautio J, Hurmerinta K. Cone beam computed tomography in the assessment of alveolar bone grafting in children with unilateral cleft lip and palate. Eur J Orthod. 2014;36:603–11. https://doi.org/10.1093/ejo/cjt105.

    PubMed  Google Scholar 

  114. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33:291–4. https://doi.org/10.1259/dmfr/25500850.

    PubMed  Google Scholar 

  115. Kajan ZD, Asli HN, Taramsari M, Chai SMF, Hemmaty YB. Comparison of height and width measurements of mandibular bone in various head orientations using cone beam computed tomography: an experimental in vitro study. Oral Radiol. 2015;31:28–35. https://doi.org/10.1007/s11282-014-0179-z.

    Google Scholar 

  116. Bohner LOL, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol. 2017;46:20160377. https://doi.org/10.1259/dmfr.20160377.

    PubMed  PubMed Central  Google Scholar 

  117. Ghoneima A, Imburgia A, Halum S, Van Dis M, Kula K. Three-dimensional airway analysis of trumpet players vs. non-trumpet players. Oral Radiol. 2015;31:105–13. https://doi.org/10.1007/s11282-014-0187-z.

    Google Scholar 

  118. Bin F, Meng Y, Meng J, Hu W. Comparison of velum morphologies using cephalometry and dental CBCT. Oral Radiol. 2016;32:1–8. https://doi.org/10.1007/s11282-015-0200-1.

    Google Scholar 

  119. Alsufyani NA, Noga ML, Witmans M, Major PW. Upper airway imaging in sleep-disordered breathing: role of cone-beam computed tomography. Oral Radiol. 2017;33:161–9. https://doi.org/10.1007/s11282-017-0280-1.

    Google Scholar 

  120. Sutthiprapaporn P, Tanimoto K, Ohtsuka M, Nagasaki T, Konishi M, Iida Y, et al. Improved inspection of the lateral pharyngeal recess using cone-beam computed tomography in the upright position. Oral Radiol. 2008;24:71–5. https://doi.org/10.1007/s11282-008-0078-2.

    Google Scholar 

  121. International Commission on Radiological Protection. Radiological Protection in Medicine. ICRP Publication 105. Ann ICRP. 2007;37(6).

  122. Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.

    PubMed  Google Scholar 

  123. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    PubMed  PubMed Central  Google Scholar 

  124. OECD. Health at a Glance 2015: OECD indicators. Paris: OECD Publishing; 2015.

    Google Scholar 

  125. Sezgin ÖS, Kayipmaz S, Yasar D, Yilmaz AB, Ozturk MH. Comparative dosimetry of dental cone beam computed tomography, panoramic radiography, and multislice computed tomography. Oral Radiol. 2008;28:32–7. https://doi.org/10.1007/s11282-011-0078-5.

    Google Scholar 

  126. Kanzaki T, Takahashi Y, Yarita K. Absorbed dose to the eye lens during dental radiography. Oral Radiol. 2017;33:246–50. https://doi.org/10.1007/s11282-016-0267-3.

    Google Scholar 

  127. Neves FS, Souza TC, de-Azevedo-Vaz SL, Campos PSF, Bóscolo FN. Influence of cone-beam computed tomography milliamperage settings on image quality of the mandibular third molar region. Oral Radiol. 2014;30:27–31. https://doi.org/10.1007/s11282-013-0132-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Takafumi Hayashi.

Ethics declarations

Conflict of interest

Yoshinori Arai has received royalties from J. Morita MFG Corporation (Kyoto, Japan). Takafumi Hayashi, Toru Chikui, Sachiko Hayashi-Sakai, Kazuya Honda, Hiroko Indo, Taisuke Kawai, Shumei Murakami, Masako Nagasawa, Munetaka Naitoh, Eiji Nakayama, Yutaka Nikkuni, Hideyoshi Nishiyama, Noriaki Shoji, Shigeaki Suenaga, and Ray Tanaka declare that they have no conflicts of interest.

Human and animal rights statements

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, T., Arai, Y., Chikui, T. et al. Clinical guidelines for dental cone-beam computed tomography. Oral Radiol 34, 89–104 (2018). https://doi.org/10.1007/s11282-018-0314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-018-0314-3

Keywords

Navigation