Pan X, Sidky EY, Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl. 2009;25:1230009.
Article
PubMed
PubMed Central
Google Scholar
Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol. 2010;194:191–9.
Article
Google Scholar
Fleischmann D, Boas FE. Computed tomography—old ideas and new technology. Eur Radiol. 2011;21:510–7.
Article
PubMed
Google Scholar
Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28:94–108.
Article
PubMed
Google Scholar
Rashed EA, Kudo H. Statistical image reconstruction from limited projection data with intensity priors. Phys Med Biol. 2012;57:2039–61.
Article
PubMed
Google Scholar
Rashed EA, Kudo H. Probabilistic atlas prior for CT image reconstruction. Comput Methods Programs Biomed. 2016;128:119–36.
Article
PubMed
Google Scholar
Schmid AI, Uder M, Lell MM. Reaching for better image quality and lower radiation dose in head and neck CT: advanced modeled and sinogram-affirmed iterative reconstruction in combination with tube voltage adaptation. Dentomaxillofac Radiol. 2017;46:20160131.
Article
PubMed
Google Scholar
Widmann G, Bischel A, Stratis A, Bosmans H, Jacobs R, Gassner EM, et al. Spatial and contrast resolution of ultralow dose dentomaxillofacial CT imaging using iterative reconstruction technology. Dentomaxillofac Radiol. 2017;46:20160452.
Article
PubMed
PubMed Central
Google Scholar
Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.
Article
PubMed
Google Scholar
Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289–306.
Article
Google Scholar
Baraniuk RG, Candes E, Elad M, Ma Y. Special Issue: applications of sparse representation and compressive sensing. Proc IEEE. 2010;98:906–9.
Article
Google Scholar
Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53:4777–807.
Article
PubMed
PubMed Central
Google Scholar
Kudo H, Suzuki T, Rashed EA. Image reconstruction for sparse-view CT and interior CT: introduction to compressed sensing and differentiated backprojection. Quant Imaging Med Surg. 2013;3:147–61.
PubMed
PubMed Central
Google Scholar
Kondo A, Hayakawa Y, Dong J, Honda A. Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol. 2010;26:61–5.
Article
Google Scholar
Dong J, Kondo A, Abe K, Hayakawa Y. Successive iterative restoration applied to streak artifact reduction in X-ray CT image of dento-alveolar region. Int J Comput Assist Radiol Surg. 2011;6:635–40.
Article
PubMed
Google Scholar
Dong J, Hayakawa Y, Kannenberg S, Kober C. Metal-induced streak artifact reduction using iterative reconstruction algorithms in X-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:e63–e73.
Article
PubMed
Google Scholar
Dong J, Hayakawa Y, Kober C. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures. Dentomaxillofac Radiol. 2014;43:20130373.
Article
PubMed
PubMed Central
Google Scholar
Sidky EY, Kao CM, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J X-ray Sci Technol. 2006;14:119–39. http://arxiv.org/abs/0904.4495v1).
Siltanen S, Kolehmainen V, Järvenpää S, Kaipio JP, Koistinen P, Lassas M, et al. Statistical inversion for medical X-ray tomography with few radiographs: I. General theory. Phys Med Biol. 2003;48:1437–63.
Article
PubMed
Google Scholar
Kolehmainen V, Siltanen S, Järvenpää S, Kaipio JP, Koistinen P, Lassas M, et al. Statistical inversion for medical X-ray tomography with few radiographs: II. Application to dental radiology. Phys Med Biol. 2003;48:1465–90.
Article
PubMed
Google Scholar
Rose S, Andersen MS, Sidky EY, Pan X. Noise properties of CT images reconstructed by use of constrained total-variation, data-discrepancy minimization. Med Phys. 2015;42:2690–8.
Article
PubMed
PubMed Central
Google Scholar
Dong J, Kudo H. Proposal of compressed sensing using nonlinear sparsifying transform for CT image reconstruction. Med Imaging Technol. 2016;34:235–44.
Google Scholar
Dong J, Kudo H. Accelerated algorithm for compressed sensing using nonlinear sparsifying transform in CT image reconstruction. Med Imaging Technol. 2017;35:63–73.
Google Scholar
Yu W, Wang C, Huang M. Edge-preserving reconstruction from sparse projections of limited-angle computed tomography using ℓ0-regularized gradient prior. Rev Sci Instrum. 2017;88:043703.
Article
PubMed
Google Scholar