Skip to main content

Advertisement

Log in

Comparison of periodontal evaluation by cone-beam computed tomography, and clinical and intraoral radiographic examinations

Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

Cone-beam computed tomography (CBCT) has been widely used in many fields of dentistry. However, little is known about the accuracy of CBCT for evaluation of periodontal status. The objective of this study was to compare and correlate periodontal assessments among CBCT, clinical attachment loss (CAL) measurement, and periapical (PA)/bitewing (BW) radiography.

Methods

Eighty patients (28 males, 52 females; age range, 19–84 years) from the University of Texas School of Dentistry at Houston were evaluated retrospectively. Measurements were taken on the central incisors, canines, and first molars of the right maxilla and left mandible. CAL was extracted from periodontal charts. The radiographic distance from the cementum–enamel junction (CEJ) to the alveolar crest was measured for tooth mesial and distal sites on PA/BW and CBCT images using MiPacs software and Anatomage Invivo software, respectively. One-way ANOVA and Pearson analysis were performed for statistical analyses.

Results

The CEJ–crest distances for CBCT, PA/BW, and CAL were 2.56 ± 0.12, 2.04 ± 0.12, and 2.08 ± 0.17 mm (mean ± SD), respectively. CBCT exhibited larger values than the other two methods (p < 0.05). There were highly significant positive correlations among CBCT, PA/BW, and CAL measurements at all examined sites (p < 0.001). The Pearson correlation coefficient was higher for CBCT with CAL relative to PA/BW with CAL, but the difference was not significant (r = 0.64 and r = 0.55, respectively, p > 0.05).

Conclusions

This study validates the suitability of CBCT for periodontal assessment. Further studies are necessary to optimize the measurement methodology with CBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Loe H, Anerud A, Boysen H, Morrison E. Natural history of periodontal disease in man. Rapid, moderate and no loss of attachment in Sri Lankan laborers 14–46 years of age. J Clin Periodontol. 1986;13:431–45.

    Article  PubMed  Google Scholar 

  2. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366:1809–20.

    Article  PubMed  Google Scholar 

  3. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86:611–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. CDC Periodontal Disease Surveillance workgroup: James Beck GDRP: prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91:914–20.

    Article  PubMed  Google Scholar 

  5. Beck JD, Eke P, Heiss G, Madianos P, Couper D, Lin D, et al. Periodontal disease and coronary heart disease: a reappraisal of the exposure. Circulation. 2005;112:19–24.

    Article  PubMed  Google Scholar 

  6. Offenbacher S. Maternal periodontal infections, prematurity, and growth restriction. Clin Obstet Gynecol. 2004;47:808–21.

    Article  PubMed  Google Scholar 

  7. Scannapieco FA. Periodontal inflammation: from gingivitis to systemic disease? Compend Contin Educ Dent. 2004;25:16–25.

    PubMed  Google Scholar 

  8. Highfield J. Diagnosis and classification of periodontal disease. Aust Dent J. 2009;54:S11–26.

    Article  PubMed  Google Scholar 

  9. Holtfreter B, Alte D, Schwahn C, Desvarieux M, Kocher T. Effects of different manual periodontal probes on periodontal measurements. J Clin Periodontol. 2012;39:1032–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bulthuis HM, Barendregt DS, Timmerman MF, Loos BG, van der Velden U. Probe penetration in relation to the connective tissue attachment level: influence of tine shape and probing force. J Clin Periodontol. 1998;25:417–23.

    Article  PubMed  Google Scholar 

  11. van der Velden U. Probing force and the relationship of the probe tip to the periodontal tissues. J Clin Periodontol. 1979;6:106–14.

    Article  PubMed  Google Scholar 

  12. Clerehugh V, Abdeia R, Hull PS. The effect of subgingival calculus on the validity of clinical probing measurements. J Dent. 1996;24:329–33.

    Article  PubMed  Google Scholar 

  13. Corraini P, Baelum V, Lopez R. Reliability of direct and indirect clinical attachment level measurements. J Clin Periodontol. 2013;40:896–905.

    Article  PubMed  Google Scholar 

  14. Fowler C, Garrett S, Crigger M, Egelberg J. Histologic probe position in treated and untreated human periodontal tissues. J Clin Periodontol. 1982;9:373–85.

    Article  PubMed  Google Scholar 

  15. Magnusson I, Listgarten MA. Histological evaluation of probing depth following periodontal treatment. J Clin Periodontol. 1980;7:26–31.

    Article  PubMed  Google Scholar 

  16. Hill EG, Slate EH, Wiegand RE, Grossi SG, Salinas CF. Study design for calibration of clinical examiners measuring periodontal parameters. J Periodontol. 2006;77:1129–41.

    Article  PubMed  Google Scholar 

  17. Michalowicz BS, Hodges JS, Pihlstrom BL. Is change in probing depth a reliable predictor of change in clinical attachment loss? J Am Dent Assoc. 2013;144:171–8.

    Article  PubMed  Google Scholar 

  18. Corbet EF, Ho DK, Lai SM. Radiographs in periodontal disease diagnosis and management. Aust Dent J. 2009;54:S27–43.

    Article  PubMed  Google Scholar 

  19. Hausmann E, Allen K, Clerehugh V. What alveolar crest level on a bite-wing radiograph represents bone loss? J Periodontol. 1991;62:570–2.

    Article  PubMed  Google Scholar 

  20. Jeffcoat MK. Current concepts in periodontal disease testing. J Am Dent Assoc. 1994;125:1071–8.

    Article  PubMed  Google Scholar 

  21. Reddy MS. Radiographic methods in the evaluation of periodontal therapy. J Periodontol. 1992;63:1078–84.

    Article  Google Scholar 

  22. Bragger U. Radiographic parameters: biological significance and clinical use. Periodontology. 2000;2005(39):73–90.

    Google Scholar 

  23. Kim TS, Obst C, Zehaczek S, Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008;79:1141–9.

    Article  PubMed  Google Scholar 

  24. Mol A. Imaging methods in periodontology. Periodontology. 2000;2004(34):34–48.

    Google Scholar 

  25. Aljehani YA. Diagnostic applications of cone-beam CT for periodontal diseases. Int J Dent. 2014;. doi:10.1155/2014/865079.

    Google Scholar 

  26. Mol A, Balasundaram A. In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol. 2008;37:319–24.

    Article  PubMed  Google Scholar 

  27. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol. 2006;35:410–6.

    Article  PubMed  Google Scholar 

  28. Raichur PS, Setty SB, Thakur SL, Naikmasur VG. Comparison of radiovisiography and digital volume tomography to direct surgical measurements in the detection of infrabony defects. J Clin Exp Dent. 2012;4:e43–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dutta A, Smith-Jack F, Saunders WP. Prevalence of periradicular periodontitis in a Scottish subpopulation found on CBCT images. Int Endod J. 2014;47:854–63.

    Article  PubMed  Google Scholar 

  30. Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig. 2006;10:1–7.

    Article  PubMed  Google Scholar 

  31. Honda K, Arai Y, Kashima M, Takano Y, Sawada K, Ejima K, et al. Evaluation of the usefulness of the limited cone-beam CT (3DX) in the assessment of the thickness of the roof of the glenoid fossa of the temporomandibular joint. Dentomaxillofac Radiol. 2004;33:391–5.

    Article  PubMed  Google Scholar 

  32. Liu DG, Zhang WL, Zhang ZY, Wu YT, Ma XC. Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:91–8.

    Article  PubMed  Google Scholar 

  33. Nakajima K, Yamaguchi T, Maki K. Surgical orthodontic treatment for a patient with advanced periodontal disease: evaluation with electromyography and 3-dimensional cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;136:450–9.

    Article  Google Scholar 

  34. du Bois AH, Kardachi B, Bartold PM. Is there a role for the use of volumetric cone beam computed tomography in periodontics? Aust Dent J. 2012;57:103–8.

    Article  PubMed  Google Scholar 

  35. Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol. 2006;77:1261–6.

    Article  PubMed  Google Scholar 

  36. Vandenberghe B, Jacobs R, Yang J. Diagnostic validity (or acuity) of 2D CCD versus 3D CBCT-images for assessing periodontal breakdown. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:395–401.

    Article  PubMed  Google Scholar 

  37. Grimard BA, Hoidal MJ, Mills MP, Mellonig JT, Nummikoski PV, Mealey BL. Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol. 2009;80:48–55.

    Article  PubMed  Google Scholar 

  38. Vandenberghe B, Jacobs R, Yang J. Detection of periodontal bone loss using digital intraoral and cone beam computed tomography images: an in vitro assessment of bony and/or infrabony defects. Dentomaxillofac Radiol. 2008;37:252–60.

    Article  PubMed  Google Scholar 

  39. de Vasconcelos Faria K, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, et al. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol. 2012;41:64–9.

    Article  Google Scholar 

  40. Fuhrmann RA, Bucker A, Diedrich PR. Assessment of alveolar bone loss with high resolution computed tomography. J Periodontal Res. 1995;30:258–63.

    Article  PubMed  Google Scholar 

  41. Takeshita WM, Iwaki LCV, Da Silva MC, Tonin RH. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss. Contemp Clin Dent. 2014;5:318–23.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Anter E, Zayet MK, El-Dessouky SH. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review). J Indian Soc Period. 2016;20:235–43.

    Google Scholar 

  43. Feijo CV, Lucena JG, Kurita LM, Pereira SL. Evaluation of cone beam computed tomography in the detection of horizontal periodontal bone defects: an in vivo study. Int J Periodontics Restor Dent. 2012;32:e162–8.

    Google Scholar 

  44. Ising N, Kim KB, Araujo E, Buschang P. Evaluation of dehiscences using cone beam computed tomography. Angle Orthod. 2012;82:122–30.

    Article  PubMed  Google Scholar 

  45. Guo YJ, Ge ZP, Ma RH, Hou JX, Li G. A six-site method for the evaluation of periodontal bone loss in cone-beam CT images. Dentomaxillofac Radiol. 2016;. doi:10.1259/dmfr.20150265.

    Google Scholar 

  46. Ferrare N, Leite AF, Caracas HC, de Azevedo RB, de Melo NS, de Souza Figueiredo PT. Cone-beam computed tomography and microtomography for alveolar bone measurements. Surg Radiol Anat. 2013;35:495–502.

    Article  PubMed  Google Scholar 

  47. Leung CC, Palomo L, Griffith R, Hans MG. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofac Orthop. 2010;137:S109–19.

    Article  Google Scholar 

  48. White SC, Pharoah MJ. Oral radiology principles and interpretation. 7th ed. St. Louis: Elsevier; 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Zhang.

Ethics declarations

Conflict of interest

Wenjian Zhang, Shazia Rajani, and Bing-Yan Wang declare that they have no conflict of interest.

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible national and institutional committees on human experimentation and with the Helsinki Declaration of 1964 and later versions. The Institutional Review Board (IRB) of the University of Texas Health Science Center at Houston approval was granted prior to the start of the study (HSC-DB-16-0398).

Informed consent

The study was a retrospective chart review, and the requirement for informed consent was waived under IRB approval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Rajani, S. & Wang, BY. Comparison of periodontal evaluation by cone-beam computed tomography, and clinical and intraoral radiographic examinations. Oral Radiol 34, 208–218 (2018). https://doi.org/10.1007/s11282-017-0298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-017-0298-4

Keywords

Navigation