Skip to main content
Log in

Influence of object location in cone beam computed tomography (NewTom 5G and 3D Accuitomo 170) on gray value measurements at an implant site

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to determine the gray value variation at an implant site with different object location within the selected field of view (FOV) in two cone beam computed tomography (CBCT) scanners.

Methods

A 1-cm-thick section from the edentulous region of a dry human mandible was scanned by two CBCT scanners: 3D Accuitomo 170 (J. Morita, Kyoto, Japan) and NewTom 5G (QR Verona, Verona, Italy). Five FOVs were used with each CBCT scanner. Within each FOV, the specimen was located at different positions. The scans were converted to DICOM format. Data analysis was performed using 3Diagnosys (ver. 3.1, 3DIEMME, Cantu, Italy) and Geomagic software (Studio 2012, Morrisville, NC). On one of the scans, a probe designating the site for pre-operative implant placement was selected. The inserted virtual implant was transformed on the same region on each CBCT scan by a three-dimensional registration algorithm. The mean voxel gray value of the region around the probe was derived separately from all CBCT scans. The influence of object location within each FOV on variability of voxel gray values was assessed.

Results

In both CBCT systems, object location had a significant influence on gray value measurements (F 4,16 = 3.71, p = 0.0255 for Accuitomo and F 4,16 = 9.31, p = 0.0000 for NewTom).

Conclusions

Gray level values from CBCT images are influenced by object location within the FOV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwarz MS, Rothman SL, Rhodes ML, Chafetz N. Computed tomography: part I. Preoperative assessment of the mandible for endosseous implant surgery. Int J Oral Maxillofac Implants. 1987;2:137–41.

    PubMed  Google Scholar 

  2. Schwarz MS, Rothman SL, Rhodes ML, Chafetz N. Computed tomography: part II. Preoperative assessment of the maxilla for endosseous implant surgery. Int J Oral Maxillofac Implants. 1987;2:143–8.

    Article  PubMed  Google Scholar 

  3. Shapurian T, Damoulis PD, Reiser GM, Griffin TJ, Rand WM. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants. 2006;21:290–7.

    PubMed  Google Scholar 

  4. Shahlaie M, Gantes B, Schulz E, Riggs M, Crigger M. Bone density assessments of dental implant sites: 1. Quantitative computed tomography. Int J Oral Maxillofac Implants. 2003;18:224–31.

    PubMed  Google Scholar 

  5. Lecomber AR, Yoneyama Y, Lovelock DJ, Hosoi T, Adams AM. Comparison of patient dose from imaging protocols for dental implant planning using conventional radiography and computed tomography. Dentomaxillofac Radiol. 2001;30:255–9.

    Article  PubMed  Google Scholar 

  6. Ngan DCS, Kharbanda OP, Geenty JP, Darendeliler MA. Comparison of radiation levels from computed tomography and conventional dental radiographs. Aust Orthod J. 2003;19:67–75.

    PubMed  Google Scholar 

  7. Kau CH, Richmond S, Palomo JM, Hans MG. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod. 2005;32:282–93.

    Article  PubMed  Google Scholar 

  8. Carrafiello G, Dizonno M, Colli V, Strocchi S, Pozzi Taubert S, Leonardi A A, et al. Comparative study of jaws with multislice computed tomography and cone-beam computed tomography. Radiol Med. 2010;115:600–11.

    Article  PubMed  Google Scholar 

  9. White SC. Cone-beam imaging in dentistry. Health Phys. 2008;95:628–37.

    Article  PubMed  Google Scholar 

  10. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol. 2012;81:267–71.

    Article  PubMed  Google Scholar 

  11. Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol. 2009;38:367–78.

    Article  PubMed  Google Scholar 

  12. Hassan B, Nijkamp P, Verheij H, Tairie J, Vink C, van der Stelt P, et al. Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Eur J Orthod. 2013;35:38–44.

    Article  PubMed  Google Scholar 

  13. Schulze R, Heil U, Groß D, et al. Artifacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Araki K, Okano T. The effect of surrounding conditions on pixel value of cone beam computed tomography. Clin Oral Implants Res. 2011;. doi:10.1111/j.1600-0501.2011.02373.x.

    PubMed  Google Scholar 

  15. Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R. Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res. 2011;22:873–9.

    Article  PubMed  Google Scholar 

  16. Naitoh M, Hirukawa A, Katsumata A, Ariji E. Evaluation of voxel values in mandibular cancellous bone: relationship between cone-beam computed tomography and multislice helical computed tomography. Clin Oral Implants Res. 2009;20:503–6.

    Article  PubMed  Google Scholar 

  17. Naitoh M, Hirukawa A, Katsumata A, Ariji E. Prospective study to estimate mandibular cancellous bone density using large-volume cone-beam computed tomography. Clin Oral Implants Res. 2010;21:1309–13.

    Article  PubMed  Google Scholar 

  18. Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res. 2010;21:558–62.

    Article  PubMed  Google Scholar 

  19. Lagravère MO, Fang Y, Carey J, Toogood RW, Packota GV, Major PW. Density conversion factor determined using a cone-beam computed tomography unit NewTom QR-DVT 9000. Dentomaxillofac Radiol. 2006;35:407–9.

    Article  PubMed  Google Scholar 

  20. Reeves T, Mah P, McDavid W. Deriving Hounsfield units using grey levels in cone beam CT: a clinical application. Dentomaxillofac Radiol. 2012;41:500–8.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Reliability of voxel gray values in cone beam computed tomography for pre-operative implant planning assessment. Int J Oral Maxillofac Implants. 2012;27:1438–42.

    PubMed  Google Scholar 

  22. Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofac Radiol. 2013;42(3):79884780.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lagravère MO, Carey J, Ben-Zvi M, Packota GV, Major PW. Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit. Dentomaxillofac Radiol. 2008;37:305–8.

    Article  PubMed  Google Scholar 

  24. Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IHA, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res. 2013;15. doi:10.1111/clr.12163.

  25. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52:707–30.

    Article  PubMed  Google Scholar 

  26. Farman AG. Field of view. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:477–8.

    Article  PubMed  Google Scholar 

  27. Bryant JA, Drage NA, Richmond S. Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol. 2008;37:365–74.

    Article  PubMed  Google Scholar 

  28. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, et al. Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:420–5.

    Article  PubMed  Google Scholar 

  29. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16:187–98.

    Article  PubMed  Google Scholar 

  30. De Vos W, Casselman J, Swennen GRJ. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38:609–25.

    Article  PubMed  Google Scholar 

  31. Tsiklakis K, Syriopoulos K, Stamatakis HC. Radiographic examination of the temporomandibular joint using cone beam computed tomography. Dentomaxillofac Radiol. 2004;33:196–201.

    Article  PubMed  Google Scholar 

  32. Sirin Y, Guven K, Horasan S, Sencan S. Diagnostic accuracy of cone beam computed tomography and conventional multislice spiral tomography in sheep mandibular condyle fractures. Dentomaxillofac Radiol. 2010;39:336–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010;39:323–35.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate Dr Hans Verheij for conducting the statistical analysis.

Conflict of interest

Azin Parsa, Norliza Ibrahim, Bassam Hassan, Paul van der Stelt, and Daniel Wismeijer declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azin Parsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsa, A., Ibrahim, N., Hassan, B. et al. Influence of object location in cone beam computed tomography (NewTom 5G and 3D Accuitomo 170) on gray value measurements at an implant site. Oral Radiol 30, 153–159 (2014). https://doi.org/10.1007/s11282-013-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-013-0157-x

Keywords

Navigation