Skip to main content
Log in

Towards efficient simulation-based constrained temporal graph pattern matching

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

In the context of searching a single data graph G, graph pattern matching is to find all the occurrences of a pattern graph Q in G, specified by a matching rule. It is of paramount importance in many real applications such as social network analysis and cyber security, among others. A wide spectrum of studies target general graph pattern matching. However, to analyze time-relevant services such as studying the spread of diseases and detecting attack patterns, it is attractive to study inexact temporal graph pattern matching. Hence, in this paper, we propose a relaxed matching rule called constrained temporal dual simulation, and study simulation-based constrained temporal graph pattern matching which guarantees that the matching result (i) preserves the ancestor and descendant temporal connectivities; and (ii) implements edge-to-temporal path mapping. We devise a decomposition-based matching method, which first decomposes the data graph into Source Temporal Connected Components, and then performs matching on decomposed subgraphs. To speed up the matching, we define child/parent dependency relation tables and propose an efficient double hierarchical traverse strategy. Considering that the temporal graphs are naturally dynamic, we further propose update algorithms. An extensive empirical study over real-world and synthetic temporal graphs has demonstrated the effectiveness and efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Algorithm 3
Algorithm 4
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The datasets and materials are available in Github (https://github.com/ZJU-DAILY/CTGPM).

Notes

  1. Highschool is available at http://www.sociopatterns.org/datasets/.

  2. SNAP is available at https://snap.stanford.edu/data/.

  3. JGraphT is available at http://jgrapht.org/.

  4. Code of Timing is available at https://github.com/pkumod/timingsubg.

References

  1. Mushlin, R.A., Kershenbaum, A., Gallagher, S.T., Rebbeck, T.R.: A graph-theoretical approach for pattern discovery in epidemiological research. IBM Syst. J. 46(1), 135–150 (2007)

    Article  Google Scholar 

  2. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.N.: POIROT: aligning attack behavior with kernel audit records for cyber threat hunting. In: CCS, pp. 1813–1830 (2019)

  3. Li, Z., Chen, Q.A., Yang, R., Chen, Y., Ruan, W.: Threat detection and investigation with system-level provenance graphs: A survey. Comput. Secur. 106, 102282 (2021)

    Article  Google Scholar 

  4. Cheng, Q., Shen, Y., Kong, D., Wu, C.: STEP: spatial-temporal network security event prediction. CoRR abs/2105.14932 (2021)

  5. Mouden, Z.A.E., Taj, R.M., Jakimi, A., Hajar, M.: Towards using graph analytics for tracking covid-19. In: The 11th international conference on emerging ubiquitous systems and pervasive networks EUSPN, pp. 204–211 (2020)

  6. Cavallaro, L., Bagdasar, O., Meo, P.D., Fiumara, G., Liotta, A.: Graph and network theory for the analysis of criminal networks. CoRR abs/2103.02504 (2021)

  7. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. PVLDB 5(4), 310–321 (2011)

    Google Scholar 

  8. Li, Y., Zou, L., Özsu, M.T., Zhao, D.: Time constrained continuous subgraph search over streaming graphs. In: ICDE, pp. 1082–1093 (2019)

  9. Lai, L., Qing, Z., Yang, Z., Jin, X., Lai, Z., Wang, R., Hao, K., Lin, X., Qin, L., Zhang, W., et al.: Distributed subgraph matching on timely dataflow. Proceedings of the VLDB Endowment 12(10), 1099–1112 (2019)

    Article  Google Scholar 

  10. Sun, S., Sun, X., Che, Y., Luo, Q., He, B.: Rapidmatch: A holistic approach to subgraph query processing. Proc. VLDB Endow. 14(2), 176–188 (2020)

    Article  Google Scholar 

  11. Zeng, L., Zou, L., Özsu, M.T., Hu, L., Zhang, F.: GSI: gpu-friendly subgraph isomorphism. In: ICDE, pp. 1249–1260 (2020)

  12. Zhu, K., Fletcher, G., Yakovets, N.: Leveraging temporal and topological selectivities in temporal-clique subgraph query processing. In: ICDE, pp. 672–683 (2021)

  13. Yang, Z., Lai, L., Lin, X., Hao, K., Zhang, W.: Huge: An efficient and scalable subgraph enumeration system. In: Proceedings of the 2021 international conference on management of data, pp. 2049–2062 (2021)

  14. Sun, S., Sun, X., He, B., Luo, Q.: Rapidflow: An efficient approach to continuous subgraph matching. Proc. VLDB Endow. 15(11), 2415–2427 (2022)

    Article  Google Scholar 

  15. Locicero, G., Micale, G., Pulvirenti, A., Ferro, A.: Temporalri: A subgraph isomorphism algorithm for temporal networks. In: International conference on complex networks and their applications, pp. 675–687 (2020)

  16. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1(1), 364–375 (2008)

    Article  Google Scholar 

  17. Redmond, U., Cunningham, P.: Subgraph isomorphism in temporal networks. CoRR abs/1605.02174 (2016)

  18. Xu, Y., Huang, J., Liu, A., Li, Z., Yin, H., Zhao, L.: Time-constrained graph pattern matching in a large temporal graph. In: APWeb-WAIM, pp. 100–115 (2017)

  19. Jin, X., Yang, Z., Lin, X., Yang, S., Qin, L., Peng, Y.: Fast: Fpga-based subgraph matching on massive graphs. In: ICDE, pp. 1452–1463 (2021). IEEE

  20. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  21. Wang, Y., Yuan, Y., Ma, Y., Wang, G.: Time-dependent graphs: Definitions, applications, and algorithms. Data Science and Engineering 4(4), 352–366 (2019)

    Article  Google Scholar 

  22. Wang, X., Zhang, Q., Guo, D., Zhao, X.: A survey of continuous subgraph matching for dynamic graphs. Knowl. Inf. Syst. 65(3), 945–989 (2023)

    Article  Google Scholar 

  23. Li, F., Zou, Z., Li, J., Yang, X., Wang, B.: Evolving subgraph matching on temporal graphs. Knowl. Based Syst. 258, 109961 (2022)

    Article  Google Scholar 

  24. Li, F., Zou, Z., Li, J.: Durable subgraph matching on temporal graphs. IEEE Trans. Knowl. Data Eng. 35(5), 4713–4726 (2023)

    Google Scholar 

  25. Cao, Y., Fan, W., Huai, J., Huang, R.: Making pattern queries bounded in big graphs. In: ICDE, pp. 161–172 (2015)

  26. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: From intractable to polynomial time. PVLDB 3(1), 264–275 (2010)

    Google Scholar 

  27. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp. 39–50 (2011)

  28. Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern matching in large-scale contextual social graphs. In: ICDE, pp. 351–362 (2015)

  29. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Annual Symposium on Foundations of Computer Science, FOCS, pp. 453–462 (1995)

  30. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: Capturing topology in graph pattern matching. ACM Trans. Database Syst. 39(1), 4–1446 (2014)

    Article  MathSciNet  Google Scholar 

  31. Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern matching. In: SIGMOD, pp. 925–936 (2011)

  32. Ma, S., Cao, Y., Huai, J., Wo, T.: Distributed graph pattern matching. In: WWW, pp. 949–958 (2012)

  33. Liu, G., Liu, Y., Zheng, K., Liu, A., Li, Z., Wang, Y., Zhou, X.: MCS-GPM: multi-constrained simulation based graph pattern matching in contextual social graphs. IEEE Trans. Knowl. Data Eng. 30(6), 1050–1064 (2018)

    Article  Google Scholar 

  34. Mahfoud, H.: Graph pattern matching with counting quantifiers and label-repetition constraints. Clust. Comput. 23(3), 1529–1553 (2020)

    Article  Google Scholar 

  35. Mahfoud, H.: Towards a strong containment for efficient matching of expressive graph patterns. In: Proceedings of the 14th international conference on management of digital ecosystems, pp. 48–55 (2022)

  36. Mahfoud, H.: Expressive top-k matching for conditional graph patterns. Neural Comput. Appl. 34(17), 14205–14221 (2022)

    Article  Google Scholar 

  37. Song, C., Ge, T., Chen, C.X., Wang, J.: Event pattern matching over graph streams. PVLDB 8(4), 413–424 (2014)

    Google Scholar 

  38. Ma, Y., Yuan, Y., Liu, M., Wang, G., Wang, Y.: Graph simulation on large scale temporal graphs. GeoInformatica 24(1), 199–220 (2020)

    Article  Google Scholar 

  39. Gao, Y., Zhang, T., Qiu, L., Linghu, Q., Chen, G.: Time-respecting flow graph pattern matching on temporal graphs. IEEE Trans. Knowl. Data Eng. 33(10), 3453–3467 (2021)

    Article  Google Scholar 

  40. Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Answering pattern match queries in large graph databases via graph embedding. VLDB J. 21(1), 97–120 (2012)

    Article  Google Scholar 

  41. Zhang, H., Bai, Q., Lian, Y., Wen, Y.: A twig-based algorithm for top-k subgraph matching in large-scale graph data. Big Data Res. 30, 100350 (2022)

    Article  Google Scholar 

  42. Sun, G., Liu, G., Wang, Y., Orgun, M.A., Sheng, Q.Z., Zhou, X.: Incremental graph pattern based node matching with multiple updates. IEEE Trans. Knowl. Data Eng. 33(4), 1585–1600 (2021)

    Article  Google Scholar 

  43. Liu, Y., Ge, Q., Pang, Y., Zou, L.: Hop-constrained subgraph query and summarization on large graphs. In: DASFAA, pp. 123–139 (2021)

  44. Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., Lin, X.: Reinforcement learning based query vertex ordering model for subgraph matching. In: ICDE, pp. 245–258 (2022)

  45. Gudmundsson, J., Narasimhan, G., Smid, M.H.M.: Geometric spanners. In: Encyclopedia of Algorithms, pp. 846–852 (2016)

  46. Zhang, T., Gao, Y., Qiu, L., Chen, L., Linghu, Q., Pu, S.: Distributed time-respecting flow graph pattern matching on temporal graphs. World Wide Web 23(1), 609–630 (2020)

    Article  Google Scholar 

  47. Fan, W., Wang, X., Wu, Y., Deng, D.: Distributed graph simulation: Impossibility and possibility. Proceedings of the VLDB Endowment 7(12), 1083–1094 (2014)

    Article  Google Scholar 

  48. Zhang, T., Gao, Y., Qiu, L., Chen, L., Linghu, Q., Pu, S.: Distributed time-respecting flow graph pattern matching on temporal graphs. World Wide Web 23, 609–630 (2020)

    Article  Google Scholar 

  49. Gehani, A., Tariq, D.: Spade: Support for provenance auditing in distributed environments. In: 13th International middleware conference, pp. 101–120 (2012)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 62302451, the Natural Science Foundation of Zhejiang Province of China under Grant No. LQ22F020018, the Key Research Project of Zhejiang Province of China under Grant No. 2023C01048, and the National Natural Science Foundation of China under Grant numbers 62276233, 62025206.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 62302451, the Natural Science Foundation of Zhejiang Province of China under Grant No. LQ22F020018, the Key Research Project of Zhejiang Province of China under Grant No. 2023C01048, and the National Natural Science Foundation of China under Grant numbers 62276233, 62025206.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianming Zhang or Yunjun Gao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Cai, X., Chen, L. et al. Towards efficient simulation-based constrained temporal graph pattern matching. World Wide Web 27, 22 (2024). https://doi.org/10.1007/s11280-024-01259-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11280-024-01259-2

Keywords

Navigation