Skip to main content
Log in

TULRN: Trajectory user linking on road networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Linking trajectories to users who generate them with deep learning techniques has been a popular research topic in recent years, due to the large-scale trajectory data obtained by ubiquitous GPS-enabled devices and the widespread applications served by the study, such as route planning, next location prediction, and destination prediction. To address the TUL (Trajectory User Linking) problem more effectively, we propose a novel semi-supervised model TULRN (Trajectory User Linking on Road Networks) based on GNN (Graph Neural Network) and BiLSTM (Bi-directional Long Short-Term Memory). The main difference between our study and existing ones is that the TUL problem is extended onto road networks in this work, where both the structure of road networks and the sequential characteristics of trajectories will be fully utilized in a unified manner. The reason behind the extension is that many trajectories are usually generated on road networks in real life, and based on which we can model the relationships between trajectories and users more precisely. Specifically, our proposed model TULRN contains four main components: (1) transforming each trajectory into a sequence of road segments and constructing a road network-aware trajectory sequence graph RTSG; (2) learning the representation of a node in RTSG with a weight-aware GNN module; (3) learning the representation of a trajectory with a BiLSTM-based module; (4) linking trajectories to users based on the embedding of each trajectory. The extensive experiments conducted on a real-world dataset demonstrate that the proposed model TULRN performs better than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Fig. 6
Figure 7

Similar content being viewed by others

Notes

  1. https://github.com/bmwcarit/barefoot/

  2. https://en.wikipedia.org/wiki/Entropy

References

  1. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)

  2. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering Similar Multidimensional Trajectories. In: ICDE, pp. 673–684 (2002)

  3. Ranu, S.P.D., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and Matching Trajectories under Inconsistent Sampling Rates. In: ICDE, pp. 999–1010 (2015)

  4. de Sousa, R.S., Boukerche, A., Loureiro, A.A.F.: Vehicle trajectory similarity: models, methods, and applications. ACM Comput. Surv. 53(5), 94–19432 (2020)

    Google Scholar 

  5. Han, P., Wang, J., Yao, D., Shang, S., Zhang, X.: A Graph-Based Approach for Trajectory Similarity Computation in Spatial Networks. In: KDD, pp. 556–564 (2021)

  6. Chen, L., Shang, S., Jensen, C.S., Yao, B., Kalnis, P.: Parallel Semantic Trajectory Similarity Join. In: ICDE, pp. 997–1008 (2020)

  7. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)

  8. Chen, W., Zhao, L., Xu, J., Liu, G., Zheng, K., Zhou, X.: Trip oriented search on activity trajectory. JCST 30(4), 745–761 (2015)

    MathSciNet  Google Scholar 

  9. Zheng, B., Zheng, K., Scheuermann, P., Zhou, X., Nguyen, Q.V.H., Li, C.: Searching activity trajectory with keywords. World Wide Web 22(3), 967–1000 (2019)

    Article  Google Scholar 

  10. Chen, L., Shang, S., Feng, S., Kalnis, P.: Parallel subtrajectory alignment over massive-scale trajectory data. In: IJCAI, pp. 3613–3619 (2021)

  11. Delling, D., Schieferdecker, D., Sommer, C.: Traffic-Aware Routing in Road Networks. In: ICDE, pp. 1543–1548 (2018)

  12. Ticha, H.B., Absi, N., Feillet, D., Quilliot, A., Woensel, T.V.: A branch-and-price algorithm for the vehicle routing problem with time windows on a road network. Networks 73(4), 401–417 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Al-Baghdadi, A., Lian, X., Cheng, E.: Efficient path routing over road networks in the presence of ad-hoc obstacles. Inf. Syst., 88 (2020)

  14. Lin, Y., Wan, H., Guo, S., Lin, Y.: Pre-Training Context and Time Aware Location Embeddings from Spatial-Temporal Trajectories for User Next Location Prediction. In: AAAI, pp. 4241–4248 (2021)

  15. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized Point-Of-Interest Recommendation. In: IJCAI, pp. 2484–2490 (2020)

  16. Zhao, P., Luo, A., Liu, Y., Xu, J., Li, Z., Zhuang, F., Sheng, V.S., Zhou, X.: Where to go next: a spatio-temporal gated network for next POI recommendation. IEEE Trans. Knowl. Data Eng. 34(5), 2512–2524 (2022)

    Article  Google Scholar 

  17. Hu, X., Xu, J., Wang, W., Li, Z., Liu, A.: A graph embedding based model for fine-grained POI recommendation. Neurocomputing 428, 376–384 (2021)

    Article  Google Scholar 

  18. Sun, H., Xu, J., Zhou, R., Chen, W., Zhao, L., Liu, C.: HOPE: A hybrid deep neural model for out-of-town next POI recommendation. World Wide Web 24(5), 1749–1768 (2021)

    Article  Google Scholar 

  19. Wang, G., Liao, D., Li, J.: Complete user mobility via user and trajectory embeddings. IEEE Access 6, 72125–72136 (2018)

    Article  Google Scholar 

  20. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying Human Mobility via Trajectory Embeddings. In: IJCAI, pp. 1689–1695 (2017)

  21. Zhou, F., Gao, Q., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Trajectory-User Linking via Variational Autoencoder. In: IJCAI, pp. 3212–3218 (2018)

  22. Zhou, F., Yin, R., Trajcevski, G., Zhang, K., Wu, J., Khokhar, A.A.: Improving human mobility identification with trajectory augmentation. GeoInformatica 25(3), 453–483 (2021)

    Article  Google Scholar 

  23. Zhou, F., Chen, S., Wu, J., Cao, C., Zhang, S.: Trajectory-User Linking via Graph Neural Network. In: ICC, pp. 1–6 (2021)

  24. Yao, D., Zhang, C., Zhu, Z., Huang, J., Bi, J.: Trajectory Clustering via Deep Representation Learning. In: IJCNN, pp. 3880–3887 (2017)

  25. Yao, D., Zhang, C., Zhu, Z., Hu, Q., Wang, Z., Huang, J., Bi, J.: Learning deep representation for trajectory clustering. Expert Syst. J. Knowl. Eng 35(2) (2018)

  26. Yang, W., Zhao, Y., Zheng, B., Liu, G., Zheng, K.: Modeling Travel Behavior Similarity with Trajectory Embedding. In: DASFAA, vol. 10827, pp. 630–646 (2018)

  27. Fu, T., Lee, W.: Trembr: Exploring road networks for trajectory representation learning. ACM Trans. Intell. Syst. Technol. 11(1), 10–11025 (2020)

    Article  Google Scholar 

  28. Liu, D., Wang, J., Shang, S., Han, P.: MSDR: Multi-Step Dependency Relation Networks for Spatial Temporal Forecasting. In: KDD, pp. 1042–1050 (2022)

  29. Xu, S., Zhang, R., Cheng, W., Xu, J.: MTLM: A multi-task learning model for travel time estimation. GeoInformatica 26(2), 379–395 (2022)

    Article  Google Scholar 

  30. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by a deep learning based approach. IEEE Trans. Knowl. Data Eng. 33(2), 651–666 (2021)

    Article  Google Scholar 

  31. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep Representation Learning for Trajectory Similarity Computation. In: ICDE, pp. 617–628 (2018)

  32. Co-Reyes, J.D., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., Levine, S.: Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings. In: ICML, pp. 1008–1017 (2018)

  33. Boonchoo, T., Ao, X., He, Q.: Multi-aspect embedding for attribute-aware trajectories. Symmetry 11(9), 1149 (2019)

    Article  Google Scholar 

  34. Miao, C., Wang, J., Yu, H., Zhang, W., Qi, Y.: Trajectory-User Linking with Attentive Recurrent Network. In: AAMAS, pp. 878–886 (2020)

  35. Sun, T., Xu, Y., Wang, F., Wu, L., Qian, T., Shao, Z.: Trajectory-User Link with Attention Recurrent Networks. In: ICPR, pp. 4589–4596 (2020)

  36. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  37. Newson, P., Krumm, J.: Hidden Markov Map Matching through Noise and Sparseness. In: GIS, pp. 336–343 (2009)

  38. Pham, H., Shahabi, C., Liu, Y.: EBM: an Entropy-Based Model to Infer Social Strength from Spatiotemporal Data. In: SIGMOD, pp. 265–276 (2013)

  39. Bulusu, K.V., Plesniak, M.W.: Shannon entropy-based wavelet transform method for autonomous coherent structure identification in fluid flow field data. Entropy 17(10), 6617–6642 (2015)

    Article  MathSciNet  Google Scholar 

  40. Chen, W., Yin, H., Wang, W., Zhao, L., Zhou, X.: Effective and Efficient User Account Linkage across Location Based Social Networks. In: ICDE, pp. 1085–1096 (2018)

  41. Kingma, D.P., Ba, J.: Adam: a Method for Stochastic Optimization. In: ICLR (2015)

  42. Gao, Q., Zhang, F., Yao, F., Li, A., Mei, L., Zhou, F.: Adversarial mobility learning for human trajectory classification. IEEE Access 8, 20563–20576 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61872166), Six Talent Peaks Project of Jiangsu Province (2019 XYDXX-161).

Funding

The funding concludes the National Natural Science Foundation of China (No.61872166), Six Talent Peaks Project of Jiangsu Province (2019 XYDXX-161).

Author information

Authors and Affiliations

Authors

Contributions

Yu Sang wrote the manuscript, Zhenping Xie modified the proposed model, Wei Chen and Lei Zhao polished the paper.

Corresponding author

Correspondence to Zhenping Xie.

Ethics declarations

Competing interests

We declare that we have no conflict of interest.

Additional information

Availability of Supporting Data

The road network and trajectory data in experiments are non-public datasets.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Spatiotemporal Data Management and Analytics for Recommend

Guest Editors: Shuo Shang, Xiangliang Zhang and Panos Kalnis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Y., Xie, Z., Chen, W. et al. TULRN: Trajectory user linking on road networks. World Wide Web 26, 1949–1965 (2023). https://doi.org/10.1007/s11280-022-01124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01124-0

Keywords

Navigation