Skip to main content
Log in

Durable queries over non-synchronized temporal data

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Temporal data are ubiquitous nowadays and efficient management of temporal data is of key importance. A temporal data typically describes the evolution of an object over time. One of the most useful queries over temporal data are the durable top-k queries. Given a time window, a durable top-k query finds the objects that are frequently among the best. Existing solutions to durable top-k queries assume that all temporal data are sampled at the same time points (i.e., at any time, there is a corresponding observed value for every temporal data). However, in many practical applications, temporal data are collected from multiple data sources with different sampling rates. In this light, we investigate the efficient processing of durable top-k queries over temporal data with different sampling rates. We propose an efficient sweep line algorithm to process durable top-k queries over non-synchronized temporal data. We conduct extensive experiments on two real datasets to test the performance of our proposed method. The results show that our methods outperforms the baseline solutions by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.kaggle.com/datasets/paultimothymooney/stock-market-data

  2. https://snap.stanford.edu/data/loc-gowalla.html

References

  1. Deng, D., Leung, C.K., Zhao, C., Wen, Y., Zheng, H.: Spatial-Temporal Data Science of COVID-19 Data. In: BigdataSE (2021)

  2. Hu, T., Wang, S., She, B., Zhang, M., Huang, X., Cui, Y., Khuri, J., Hu, Y, Fu, X, Wang, X., Wang, P., Zhu, X., Bao, S., Guan, W., Li, Z.: Human mobility data in the COVID-19 pandemic: characteristics, applications, and challenges. Int. J. Digit. Earth 14(9), 1126–1147 (2021)

  3. Niu, Z., Wu, J., Liu, X., Huang, L., Nielsen, P. S.: Understanding energy demand behaviors through spatio-temporal smart meter data analysis. Energy 226, 120493 (2021)

    Article  Google Scholar 

  4. Lin, W., Wu, D, Boulet, B.: Spatial-temporal residential short-term load forecasting via graph neural networks. IEEE Trans. Smart Grid 12(6), 5373–5384 (2021)

    Article  Google Scholar 

  5. Yuan, H., Li, G.: A survey of traffic prediction: from spatio-temporal data to intelligent transportation. Data Sci. Eng. 6, 63–85 (2021)

    Article  Google Scholar 

  6. Zhang, X., Huang, C., Xu, Y., Xia, L., Dai, P., Bo, L., Zhang, J., Zheng, Y.: Traffic flow forecasting with spatial-temporal graph diffusion network. In: AAAI (2021)

  7. Liu, X., Hadiatullah, H., Tai, P., Yanling, X u, Zhang, X., Schnelle-Kreis, J., Schloter-Hai, B., Zimmermann, R.: Air pollution in Germany: spatio-temporal variations and their driving factors based on continous data from 2008 to 2018. Environ. Pollut. 276, 116732 (2021)

    Article  Google Scholar 

  8. Zhao, S., Liu, S., Hou, X., Cheng, F., Wu, X., Dong, S., Beazley, R.: Temporal dynamics of SO2 and NOx pollution and contributions of driving forces in urban areas in China. Environ. Pollut. 242, 239–248 (2018)

    Article  Google Scholar 

  9. Atluri, G., Karpatne, A., Kumar, V.: Spatio-temporal data mining: a survey of problems and methods. ACM Comput. Surv. 51(4), Article 83 (2018)

    Google Scholar 

  10. Lee, M. L., Hsu, W., Li, L., Tok, W. H.: Consistent Top-K Queries over Time. In: DASFAA (2009)

  11. Jestes, J., Phillips, J.M., Li, F., Tang, M.: Ranking large temporal data. PVLDB 5(11), 1412–1423 (2012)

    Google Scholar 

  12. Leong Hou, U, Mamoulis, N., Berberich, K., Bedathur, S.: Durable Top-K search in document archives. In: SIGMOD (2010)

  13. Wang, H., Cai, Y., Yang, Y., Zhang, S., Mamoulis, N.: Durable queries over historical time series. TKDE 26(3), 595–607 (2014)

    Google Scholar 

  14. Wang, H., Ou, J., Yuan, Y.: Strategy of data processing for GPS rover and reference receivers using different sampling rates. IEEE Trans. Geosci. Remote Sens. 49(3), 1144–1149 (2011)

    Article  Google Scholar 

  15. Han, S u, Zheng, K., Huang, J., Wang, H., Zhou, X.: Calibrating trajectory data for spatio-temporal similarity analysis. VLDB J 24, 93–116 (2015)

    Article  Google Scholar 

  16. Horn, M., Moor, M., Bock, C., Rieck, B., Borgwardt, K.: Set functions for time series. In: ICML (2020)

  17. Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G., Zwaenepoel, W.: Online piece-wise linear approximation of numerical streams with precision guarantees. In: VLDB (2009)

  18. Ge, L., Ke, Y i, Cheng, Siu-Wing, Li, Z., Fan, W., He, C., Mu, Y.: Piecewise Linear Approximation of Streaming Time Series Data with Max-Error Guarantees. In: ICDE (2015)

  19. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry: Algorithms and Applications. Springer, 3rd edn (2008)

  20. Li, F., Yi, K., Le, W.: Top-k queries on temporal data. VLDB J 19(5), 715–733 (2010)

  21. Cho, E., Myers, S.A., Leskovec, J.: Friendship and Mobility: User Movement in Location-Based Social Networks. In: KDD (2011)

  22. Ruz, G.A., Henríquez, P.A., Mascareño, A.: Sentiment analysis of twitter data during critical events through Bayesian networks classifiers. FGCS 106, 92–104 (2020)

    Article  Google Scholar 

  23. Li, K, Chen, L., Shang, S., Wang, H., Liu, Y., Kalnis, P., Yao, B.: Towards Controlling the Transmission of Diseases: Continuous Exposure Discovery over Massive-Scale Moving Objects. In: IJCAI (2022)

  24. Yang, C., Chen, L., Wang, H., Shang, S.: Towards Efficient Selection of Activity Trajectories Based on Discovery and Coverage. In: AAAI (2021)

  25. Chen, L., Shang, S., Jensen, C.S., Yao, B., Shao, L.: Parallel Semantic Trajectory Similarity Join. In: ICDE (2020)

  26. Shang, S., Chen, L., Zheng, K., Jensen, C.S., Wei, Z., Kalnis, P.: Parallel trajectory-to-location join. TKDE 31(6), 1194–1207 (2019)

    Google Scholar 

  27. Rao, X., Wang, H., Zhang, L., Li, J., Shang, S., Han, P.: FOGS: First-Order Gradient Supervision with Learning-Based Graph for Traffic Flow Forecasting. In: IJCAI (2022)

  28. Alaee, S., Mercer, R., Kamgar, K., Keogh, E.: Time series motifs discovery under DTW allows more robust discovery of conserved structure. DMKD 35, 863–910 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Imani, S., Madrid, F., Ding, W., Crouter, S.E., Keogh, E.: Introducing time series snippets: a new primitive for summarizing long time series. DMKD 34, 1713–1743 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Yang, C., Deng, D., Shang, S., Shao, L.: Efficient locality-sensitive hashing over high-dimensional data streams. In: ICDE (2020)

  31. Yang, C., Chen, L., Shang, S., Zhu, F., Li, L., Shao, L.: Toward efficient navigation of massive-scale geo-textual streams. In: IJCAI (2019)

  32. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: ICDE (2001)

  33. Jiang, B., Pei, J.: Online interval skyline queries on time series. In: ICDE (2009)

  34. Gao, J., Agarwal, P.K., Yang, J.: Durable top-k queries on temporal data. PVLDB 11(13), 2223–2235 (2018)

    Google Scholar 

  35. Gao, J., Sintos, S., Agarwal, P.K., Yang, J.: Durable Top-K instant-stamped temporal records with user-specified scoring functions. In: ICDE (2021)

  36. Chen, L., Shang, S., Zhang, Z., Cao, X., Jensen, C.S., Kalnis, P.: Location-aware Top-K term Publish/Subscribe. In: ICDE (2018)

  37. Chen, L., Shang, S., Yao, B., Zheng, K.: Spatio-temporal top-k term search over sliding window. WWW 22(5), 1953–1970 (2019)

    Google Scholar 

  38. Chen, L., Shang, S.: Approximate spatio-temporal top-k publish/subscribe. WWW 22(5), 2153–2175 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Technology Department of Fujian Province, China, for its financial support to this work.

Funding

The work is supported by the Fujian Province Science and Technology Plan Project (No. 2019J05123).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions are as follows.

– Yanqi Xie: Problem formulation, algorithm design, coding, and paper writing.

– Wei Weng: Problem formulation, algorithm analysis, and experiment analysis.

– Jianmin Li: Problem formulation, algorithm design, algorithm analysis, and paper proofreading.

All authors have reviewed the manuscript.

Corresponding author

Correspondence to Jianmin Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Human and Animal Ethics

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Availability of Supporting Data

Not applicable.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Spatiotemporal Data Management and Analytics for Recommend

Guest Editors: Shuo Shang, Xiangliang Zhang and Panos Kalnis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Weng, W. & Li, J. Durable queries over non-synchronized temporal data. World Wide Web 26, 2099–2113 (2023). https://doi.org/10.1007/s11280-022-01122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01122-2

Keywords

Navigation