Skip to main content
Log in

Multi-scale graph classification with shared graph neural network

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Graph data is an irregular structural data type that is broadly used in various realistic scenarios to represent the complex interrelationships or topological structures inside the data. As the topological structures of the graphs are usually different from each other, it is difficult to handle the graph classification task. Most existing methods rely on Graph Neural Networks (GNNs) to extract the graph embeddings and produce the classification results based on these graph embeddings. However, these GNN-based methods usually have the over-smoothing issue caused by superimposing GNN to increase the receptive field when extracting high-order local structures. To address this issue, we proposed a novel Multi-Scale Fusion Graph Neural Network (MSFG) in this paper. Through the proposed multi-scale graph coarsen framework and parameter sharing mechanism, the proposed model can efficiently extract high-order structural features of graphs without increasing the number of GNN layers. We conduct experiments on six graph classification datasets and the experimental results show the effectiveness of the proposed MSFG model. Furthermore, multiple ablation experiments prove the validity of each component of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7

Similar content being viewed by others

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: WSDM, pp. 635–644 (2011)

  2. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: ICDM, pp. 74–81 (2005)

  3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21, i47–i56 (2005)

    Article  Google Scholar 

  4. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, pp. 3438–3445 (2020)

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587(2017)

  6. Chen, S., Varma, R., Sandryhaila, A., Kovačević, J.: Discrete signal processing on graphs: Sampling theory. IEEE Transactions on Signal Processing 63, 6510–6523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

  8. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry 34, 786–797 (1991)

    Article  Google Scholar 

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems 29, 3844–3852 (2016)

    Google Scholar 

  10. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1944–1957 (2007)

    Article  Google Scholar 

  11. Gan, J., Hu, R., Mo, Y., Kang, Z., Peng, L., Zhu, Y., Zhu, X.: Multi-graph fusion for dynamic graph convolutional network. IEEE Trans Neural Netw Learn Syst, pp. 1–12. https://doi.org/10.1109/TNNLS.2022.3172588 (2022)

  12. Gan, J., Peng, Z., Zhu, X., Hu, R., Ma, J., Wu, G.: Brain functional connectivity analysis based on multi-graph fusion. Medical Image Analysis. https://doi.org/10.1016/j.media.2021.102057 (2021)

  13. Gao, H., Ji, S.: Graph U-Nets. In: ICML, pp. 2083–2092 (2019)

  14. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21, 4290–4303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., Zou, C.: Hypergraph learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

  16. Gärtner, T., Flach, P., Wrobel, S.: On Graph Kernels: Hardness Results and Efficient Alternatives. In: COLT/Kernel, pp. 129–143 (2003)

  17. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)

    MATH  Google Scholar 

  18. Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Artifical Intelligence and Machine Learning 14, 1–159 (2020)

    Article  MATH  Google Scholar 

  19. Hido, S., Kashima, H.: A linear-time graph kernel. In: ICDM, pp. 179–188 (2009)

  20. Hu, R., Peng, Z., Zhu, X., Gan, J., Zhu, Y., Ma, J., Wu, G.: Multi-band brain network analysis for functional neuroimaging biomarker identification. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2021.3099641(2021)

  21. Huang, J., Li, Z., Li, N., Liu, S., Li, G.: Attpool: towards hierarchical feature representation in graph convolutional networks via attention mechanism. In: ICCV, pp. 6480–6489 (2019)

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)

  23. Kriege, N.M., Giscard, P.L., Wilson, R.: On valid optimal assignment kernels and applications to graph classification. Advances in Neural Information Processing Systems 29, 1623–1631 (2016)

    Google Scholar 

  24. Lee, J., Lee, I., Kang, J.: Self-Attention Graph Pooling. In: ICML, pp. 3734–3743 (2019)

  25. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: single shot multibox detector. In: ECCV, pp. 21–37 (2016)

  26. Lu, H.H.S., Schölkopf, B., Zhao, H.: Handbook of Statistical Bioinformatics. Springer Science & Business Media, Berlin (2011)

    Book  MATH  Google Scholar 

  27. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20, 498–511 (2009)

    Article  Google Scholar 

  28. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe, M.: Weisfeiler and Leman Go Neural: Higher-order graph neural networks. In: AAAI, pp. 4602–4609 (2019)

  29. Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.: Ssh: single stage headless face detector. In: ICCV, pp. 4875–4884 (2017)

  30. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for graph similarity. In: AAAI, pp. 2429–2435 (2017)

  31. Peng, L., Hu, R., Kong, F., Gan, J., Mo, Y., Shi, X., Zhu, X.: Reverse graph learning for graph neural network. IEEE Trans Neural Netw Learn Syst, pp. 1–12. https://doi.org/10.1109/TNNLS.2022.3161030 (2022)

  32. Ranjan, E., Sanyal, S., Talukdar, P.: Asap: adaptive structure aware pooling for learning hierarchical graph representations. In: AAAI, pp. 5470–5477 (2020)

  33. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Shi, H., Zhang, Y., Zhang, Z., Ma, N., Zhao, X., Gao, Y., Sun, J.: Hypergraph-induced convolutional networks for visual classification. IEEE Transactions on Neural Networks and Learning Systems 30, 2963–2972 (2018)

    Article  Google Scholar 

  35. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine 30, 83–98 (2013)

    Article  Google Scholar 

  36. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis, M.: Grakel: A graph kernel library in python. J. Mach. Learn. Res. 21, 54–1 (2020)

    Google Scholar 

  37. Sun, Q., Li, J., Peng, H., Wu, J., Ning, Y., Yu, P.S., He, L.: Sugar: subgraph neural network with reinforcement pooling and self-supervised mutual information mechanism. In: WWW, pp. 2081–2091 (2021)

  38. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

  39. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv:1710.10903 (2017)

  40. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: Sequence to sequence for sets. arXiv:1511.06391 (2015)

  41. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38, 1–12 (2019)

    Google Scholar 

  42. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv:1810.00826 (2018)

  43. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365–1374 (2015)

  44. Yang, S.Y., Liu, F.C., Zhu, X., Yen, D.C.: A graph mining approach to identify financial reporting patterns: an empirical examination of industry classifications. Decis. Sci. 50, 847–876 (2019)

    Article  Google Scholar 

  45. Yang, Y., Wang, X., Song, M., Yuan, J., Tao, D.: Spagan: Shortest path graph attention network. arXiv:2101.03464 (2021)

  46. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS, pp. 4801–4811 (2018)

  47. Yuan, C., Zhong, Z., Lei, C., Zhu, X., Hu, R.: Adaptive reverse graph learning for robust subspace learning. Information Processing & Management. https://doi.org/10.1016/j.ipm.2021.102733 (2021)

  48. Zhang, D., Chen, J., Lu, X.: Blockchain phishing scam detection via multi-channel graph classification. In: Blocksys, pp. 241–256 (2021)

  49. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters 23, 1499–1503 (2016)

    Article  Google Scholar 

  50. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI, pp. 4438–4445 (2018)

  51. Zhang, Y.J.: Multi-resolution image. In: Handbook of Image Engineering, pp. 807–822 (2021)

  52. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

  53. Zheng, W., Zhu, X., Wen, G., Zhu, Y., Yu, H., Gan, J.: Unsupervised feature selection by self-paced learning regularization. Pattern Recogn. Lett. 132, 4–11 (2020)

    Article  Google Scholar 

  54. Zhou, Y., Wang, M., Wang, R., Huo, S.: Graph neural network for video-query based video moment retrieval. arXiv:2007.09877 (2020)

  55. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Transactions on Cybernetics 46, 450–461 (2016)

    Article  Google Scholar 

  56. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Transactions on Neural Networks and Learning Systems 28, 1263–1275 (2017)

    Article  MathSciNet  Google Scholar 

  57. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Transactions on Multimedia 19, 2033–2044 (2017)

    Article  Google Scholar 

  58. Zhu, X., Song, B., Shi, F., Chen, Y., Hu, R., Gan, J., Zhang, W., Li, M., Wang, L., Gao, Y., et al.: Joint prediction and time estimation of covid-19 developing severe symptoms using chest ct scan. Medical image analysis 67, 101824 (2021)

    Article  Google Scholar 

  59. Zhu, X., Zhang, S., Zhu, Y., Zhu, P., Gao, Y.: Unsupervised spectral feature selection with dynamic hyper-graph learning. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2020.3017250 (2020)

  60. Zhu, Y., Ma, J., Yuan, C., Zhu, X.: Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease analysis. Information Fusion 77, 53–61 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Tang or Junbo Ma.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Web-based Intelligent Financial Services

Guest Editors: Hong-Ning Dai, Xiaohui Haoran, and Miguel Martinez

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Wu, Z., Wen, G. et al. Multi-scale graph classification with shared graph neural network. World Wide Web 26, 949–966 (2023). https://doi.org/10.1007/s11280-022-01070-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01070-x

Keywords

Navigation