Skip to main content
Log in

CSR: A community based spreaders ranking algorithm for influence maximization in social networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Online social networks have become a consistent part of our day-to-day life. They virtually connect people around the world and serve as ideal platforms for interactions, sharing of information, ideas, and products. Influence maximization (IM) is the problem of maximizing the reach of an idea or an opinion in a network by shortlisting the most influential nodes in the respective network, which are further used as seed nodes to spread the information in the rest of the network. It is a problem of great relevance in today’s world because of its real life applicability in the business. Numerous methods have been proposed in the literature to rank the nodes according to their spreading ability and certain other characteristics. In this paper, we propose a novel method to solve the problem of influence maximization named Communities based Spreader Ranking (CSR), which is based on the notions of communities and bridge nodes. It identifies bridge nodes as influential nodes based on three concepts: community diversity, community modularity, and community density. Community diversity is used to identify bridge nodes and the rest two are used to identify significant communities. Extensive experimentation validation on various datasets using popular information diffusion models demonstrates that the proposed method delivers proficient results compared to numerous previously known contemporary influence maximization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A: Stat. Mech. Appl. 395, 549–559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bamakan, S.M.H., Nurgaliev, I., Qu, Q.: Opinion leader detection: a methodological review. Expert Syst. Appl. 115, 200–222 (2018)

    Article  Google Scholar 

  3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J Stat. Mech: Theo. Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  4. Boguná, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70 (5), 056122 (2004)

    Article  Google Scholar 

  5. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Net. 29(4), 555–64 (2007)

    Article  Google Scholar 

  6. Bozorgi, A., Samet, S., Kwisthout, J., Wareham, T.: Community-based influence maximization in social networks under a competitive linear threshold model. Knowl. Based Syst. 134, 149–58 (2017)

    Article  Google Scholar 

  7. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search engine. Comput. Net 56(18), 3825–3833 (2012)

    Article  Google Scholar 

  8. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and influence propagation in social networks. Synthesis Lectures on Data Management 5(4), 1–177 (2013)

    Article  Google Scholar 

  9. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp.57–66 (2001)

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486 (3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry pp.35–41 (1977)

  12. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Net. 1(3), 215–239 (1978)

    Article  Google Scholar 

  13. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst 6(04), 565–573 (2003)

    Article  Google Scholar 

  14. Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Acad. Mark. Sci. Rev. 9(3), 1–18 (2001)

    Google Scholar 

  15. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. lett 12 (3), 211–223 (2001)

    Article  Google Scholar 

  16. Havlin, S., Kenett, D.Y., Ben-Jacob, E., Bunde, A., Cohen, R., Hermann, H., Kantelhardt, J.W., Kertész, J, Kirkpatrick, S., Kurths, J., Portugali, J.: Challenges in network science: Applications to infrastructures, climate, social systems and economics. Eur. Phys. J Spec. Top 214(1), 273–293 (2012)

    Article  Google Scholar 

  17. He, Q., Wang, X., Mao, F., Lv, J., Cai Y Huang, M., Xu, Q.: CAOM: A community-based approach to tackle opinion maximization for social networks. Inform. Sci. 513, 252–269 (2019)

    Article  MathSciNet  Google Scholar 

  18. Heidemann, J., Klier, M., Probst, F.: Online social networks: a survey of a global phenomenon. Comput. Net. 56(18), 3866–3878 (2012)

    Article  Google Scholar 

  19. Jia-sheng, W., Xiao-ping, W., Bo, Y., Jiang-wei, G.: Improved method of node importance evaluation based on node contraction in complex networks. Procedia Engineering 15, 1600–1604 (2011)

    Article  Google Scholar 

  20. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 137–146 (2003)

  21. Khomami, M.M.D., Rezvanian, A., Meybodi, M., Bagheri, A.: CFIN: A community-based algorithm for finding influential nodes in complex social networks. The Journal of Supercomputing, pp.1–30 (2020)

  22. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys 6(11), 888–893 (2010)

    Article  Google Scholar 

  23. Kumar, S., Lohia, D., Pratap, D., Krishna, A., Panda, B.S.: MDER: Modified degree with exclusion ratio algorithm for influence maximisation in social networks. Computing. 1–24 (2021)

  24. Kumar, S., Panda, B.S., Aggarwal, D.: Community detection in complex networks using network embedding and gravitational search algorithm. J Intell Inf. Syst. 57, 51–72 (2020)

    Article  Google Scholar 

  25. Kumar, S., Saini, M., Goel, M., Panda, B.S.: Modeling information diffusion in online social networks using a modified forest-fire model. J Intell. Inf. Syst 56(2), 355–77 (2020)

    Article  Google Scholar 

  26. Kumar, S., Singhla, L., Jindal, K., Grover, K., Panda, B.S.: IM-ELPR: Influence Maximization in social networks using label propagation based community structure, Applied Intelligence. pp 1–19 (2021)

  27. Kunegis, J.: KONECT: the Koblenz network collection. In: WWW 2013 Companion–Proceedings of the 22nd International Conference on World Wide Web (2013)

  28. Leskovec J, Kleinberg J, Faloutsos C: Graph evolution: Densification and shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD) 1(1), 2–es (2007)

    Article  Google Scholar 

  29. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans Knowledge Discov Data. 1 (2006)

  30. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 420–429 (2007)

  31. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

    Article  Google Scholar 

  32. Li, M., Wang, X., Gao, Zhang S: A survey on information diffusion in online social networks: Models and methods. Information 8(4), 118 (2017)

    Article  Google Scholar 

  33. Liu, W., Chen, X., Jeon, B., Chen, L., Chen, B.: Influence maximization on signed networks under independent cascade model. Appl. Intell. 49(3), 912–28 (2019). Mar 15

    Article  Google Scholar 

  34. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  35. Ma, L.L., Ma, C., Zhang, H.F., Wang, B.H.: Identifying influential spreaders in complex networks based on gravity formula. Phys. A: Stat. Mech. Appl. 451, 205–212 (2016)

    Article  MATH  Google Scholar 

  36. Matei, R., Iamnitchi, A., Foster, P.: Mapping the gnutella network. IEEE Internet Computing 6(1), 50–57 (2002)

    Article  Google Scholar 

  37. Okamoto, K., Chen, W., Li, X.Y.: Ranking of Closeness Centrality for Large-Scale Social Networks. In: International Workshop on Frontiers in Algorithmics, (Pp. 186-195) Springer, Berlin, Heidelberg (2008)

  38. Salavati, C., Abdollahpouri, A., Manbari, Z.: Ranking nodes in complex networks based on local structure and improving closeness centrality. Neurocomputing 336, 36–45 (2018)

    Article  Google Scholar 

  39. Satsuma, J., Willox, R., Ramani, A., Grammaticos, B., Carstea, A.S.: Extending the SIR epidemic model. Phys. A: Stat. Mech. Appl. 336(3-4), 369–75 (2004)

    Article  Google Scholar 

  40. Valente, T.W., Pumpuang, P.: Identifying opinionlLeaders to promote behavior change. Health Educ. Behav. 34(6), 881–896 (2008)

    Article  Google Scholar 

  41. Wen, T., Deng, Y.: Identification of influencers in complex networks by local information dimensionality. Inform. Sci. 512, 549–562 (2019)

    Article  Google Scholar 

  42. Yang, J., Yao, C., Ma, W., Chen, G.: A study of the spreading scheme for viral marketing based on a complex network model. Phys. A: Stat. Mech. Appl 389(4), 859–870 (2010)

    Article  Google Scholar 

  43. Zareie, A., Sheikhahmadi, A., Fatemi, A.: Influential nodes ranking in complex networks: an entropy-based approach. Chaos, Solitons & Fractal 104, 485–494 (2017)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Computational Aspects of Network Science

Guest Editors: Apostolos N. Papadopoulos and Richard Chbeir

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gupta, A. & Khatri, I. CSR: A community based spreaders ranking algorithm for influence maximization in social networks. World Wide Web 25, 2303–2322 (2022). https://doi.org/10.1007/s11280-021-00996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00996-y

Keywords

Navigation