Skip to main content

A fast local community detection algorithm in complex networks


Considering the problems of communication overhead between nodes and the challenges brought by large-scale complex network in distributed system cluster management, we propose a local community detection algorithm in complex network called FLCDA (Fast Local Community Detection Algorithm). FLCDA can detect communities in a large-scale complex network on a single PC. The algorithm uses a Parallel Sliding Windows (PSW) method to break a large-scale network into smaller sub-networks, and load sub-network into a PC memory. This method conforms to the local characteristics of the community. FLCDA first finds out disjoint Maximum Influence k-clique in each sub-network, and then assigns the same label and weight to all nodes in the same Maximum Influence k-clique. These labels and weights are used as seeds at the label propagation phase of FLCDA. During the labeling propagation phase, FLCDA applies a synchronous update strategy while removes meaningless labels after each iteration. When all node labels are updated, the update process will be ended. This method can reduce the calculation cost and improve the stability. The experiment results show that non-parameter FLCDA can self-adaptively detect communities on various scales and types of complex networks. By comparing with other algorithms, FLCDA has gained higher community detection accuracy and less running time. Therefore, FLCDA algorithm can be better adapted to community detection in real complex networks without prior knowledge.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach. Proc. VLDB Endowment 10(11), 1298–1309 (2017)

    Article  Google Scholar 

  2. 2.

    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 30(2), 155–168 (2008)

    MATH  Google Scholar 

  3. 3.

    Chang, L.: Efficient maximum clique computation and enumeration over large sparse graphs. VLDB J. 29, 999–1022 (2020)

    Article  Google Scholar 

  4. 4.

    Dean, J., Ghemawat, S., MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on Symposium on Operating Systems Design & Implementation (OSDI), pp.137–150 (2004)

  5. 5.

    Deng, Z., Qiao, H., Song, Q., Gao, L.: A complex network community detection algorithm based on label propagation and fuzzy c-means. Phys. A 519, 217–226 (2019)

    Article  Google Scholar 

  6. 6.

    Dharwadker, A.: The Clique Algorithm. CreateSpace Independent Publishing Platform 1–46 (2011)

  7. 7.

    Ding, X., Zhang, J., Yang, J.: Node-community membership diversifies community structures: an overlapping community detection algorithm based on local expansion and boundary re-checking. Knowl.-Based Syst. 198, 105935 (2020)

    Article  Google Scholar 

  8. 8.

    Epasto, A., Lattanzi, S., Leme, R. P.: Ego-splitting framework: from non-overlapping to overlapping clusters. In: ACM SIGKDD, pp.145–154(2017)

  9. 9.

    Epasto, A., Lattanzi, S., Mirrokni, V., Sebe, I.O., Taei, A., Verma, S.: Ego-net community mining applied to friend suggestion. Proc. VLDB Endowment 9(4), 324–335 (2016)

    Article  Google Scholar 

  10. 10.

    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)

    MATH  Article  Google Scholar 

  11. 11.

    He, C., Tang, Y., Yang, A., Zhao, G., Liu, H., Huang, C.: Large-scale topic community mining based on distributed nonnegative matrix factorization. Sci. Sin. Informationis 46(6), 714–728 (2016)

    Article  Google Scholar 

  12. 12.

    Janez, K., Dušanka, J.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem 58(3), 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Jia, H., Ratnavelu, K.: A semi-synchronous label propagation algorithm with constraints for community detection in complex networks. Sci. Rep. 7, 45836 (2017)

    Article  Google Scholar 

  14. 14.

    Jin, D., Zhang, B., Song, Y., He, D., Feng, Z., Chen, S., Li, W., Musial, K.: Modmrf: a modularity-based markov random field method for community detection. Neurocomputing 405, 218–228 (2020)

    Article  Google Scholar 

  15. 15.

    Jokar, E., Mosle, M.: Community detection in social networks based on improved label propagation algorithm and balanced link density. Phys. Lett. A 83(8), 718–727 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kai, G., Li, K.: A new k-shell decomposition method for identifying influential spreaders of epidemics on community networks. J. Syst. Sci. Inf. 6(4), 366–375 (2018)

    Google Scholar 

  17. 17.

    Kuang, Z., Martin, A., Quan, P., Liu, Z.: SELP: Semi-supervised evidential label propagation algorithm for graph data clustering. Int. J. Approx. Reason. 92, 139–154 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Kuzmin, K., Shah, S.Y., Szymanski, B.K.: Parallel overlapping community detection with SLPA. In: IEEE International Conference on Social Computing, pp.204–212 (2013)

  19. 19.

    Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation on just a PC. In: Usenix Conference on Operating Systems Design and Implementation, pp.31–46 (2014)

  20. 20.

    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  21. 21.

    Lee, C., Reid, F., Mcdaid, A., Hurley, N.: Detecting highly overlapping community structure by greedy clique expansion. eprint arXiv:1002.1827 pp.33–42 (2010)

  22. 22.

    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Li, C.: Brief analysis of runtime system oriented graph computation. Commun CCF 14(7), 23–28 (2018)

    Google Scholar 

  24. 24.

    Li, C., Tang, Y., Tang, Z., Huang, Y., Yuan, C., Zhao, J.: Community detection model in large-scale academic social networks. J. Comput. Appl. 35(9), 2565–2568 (2015). (2573)

    Google Scholar 

  25. 25.

    Li, C., Tang, Z., Tang, Y., Zhao, J., Huang, Y.: Community detection algorithm with local-first approach in social networks. J. Front. Comput. Sci. Technol. 12(8), 1263–1277 (2018)

    Google Scholar 

  26. 26.

    Li, C.Y., Tang, Y., Lin, H., Yuan, C.Z., Mai, H.Q.: Parallel overlapping community detection algorithm in complex networks based on label propagation. Sci. Sin. Informationis 46(2), 212–227 (2016)

    Google Scholar 

  27. 27.

    Li, J., Wang, X., Wu, P.: Review on community detection methods based on local optimization. Bull. Chin. Acad. Sci. 2, 238–247 (2015)

    Google Scholar 

  28. 28.

    Li, P., Huang, L., Wang, C., Lai, J.: Community detection by motif-aware label propagation. ACM Trans. Knowl. Discov. Data 14(2), 1–19 (2019)

    Article  Google Scholar 

  29. 29.

    Li, Y., Sha, C., Huang, Y., Zhang, Y.: Community detection in attributed graphs: An embedding approach. AAAI 32(1), 338–345 (2018)

    Google Scholar 

  30. 30.

    Li, Y., Wang, G., Zhao, Y., Zhu, F., Wu, Y.: Towards k-node connected component discovery from large networks. World Wide Web 23(2), 799–830 (2020)

    Article  Google Scholar 

  31. 31.

    Liu, W., Jiang, X., Pellegrini, M., Wang, X.: Discovering communities in complex networks by edge label propagation. Sci. Rep. 6, 22470 (2016)

    Article  Google Scholar 

  32. 32.

    Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.: Distributed GraphLab: a framework for machine learning data mining in the cloud. Proc. VLDB Endowment 5(8), 716–727 (2012)

    Article  Google Scholar 

  33. 33.

    Lu, H., Halappanavar, M., Kalyanaraman, A.: Parallel heuristics for scalable community detection. Parallel Comput. 47, 19–37 (2014)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Luo, L., Liu, Y., Qian, D.: Survey on in-memory computing technology. J. Softw. 27(8), 2147–2167 (2016)

    MathSciNet  Google Scholar 

  35. 35.

    McDaid, A.F., Greene, D., Hurley, N.: Normalized mutual information to evaluate overlapping community finding algorithms. CoRR abs/1110.2515 (2011)

  36. 36.

    Meng, J., Fu, D., Yang, T.: Semi-supervised soft label propagation based on mass function for community detection. In: 21st International Conference on Information Fusion (FUSION), pp. 1163–1170 (2018)

  37. 37.

    Michele, C., Giulio, R., Fosca, G., Dino, P.: Uncovering hierarchical and overlapping communities with a local-first approach. ACM Trans. Knowl. Discov. Data (TKDD) 9(1), 1–27 (2014)

    Google Scholar 

  38. 38.

    Nicosia, V., Mangioni, G., Carchiolo, V., Mangioni, G.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech: Theory Exp. 2009(3), 3166–3168 (2009)

    Article  Google Scholar 

  39. 39.

    Ovelgönne, M.: Distributed community detection in web-scale networks. In: ASONAM, pp. 66–73 (2013)

  40. 40.

    Palla, G., Deranyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7046), 814–818 (2005)

    Article  Google Scholar 

  41. 41.

    Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W., Choudhary, A.: Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs. Optimization Methods and Software, pp.1–14 (2012)

  42. 42.

    Qiao, S., Guo, J., Han, N., Zhang, X., Yuan, C., Tang, C.: Parallel algorithm for discovering communities in large-scale complex networks. Chin. J. Comput. 40(3), 687–700 (2017)

    MathSciNet  Google Scholar 

  43. 43.

    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  44. 44.

    Rigi, M., Moser, I., Farhangi, M., Lui, C.: Finding and tracking local communities by approximating derivatives in networks. World Wide Web 23, 1519–1551 (2020)

    Article  Google Scholar 

  45. 45.

    Shang, R., Zhang, W., Jiao, L.: Circularly searching core nodes based label propagation algorithm for community detection. Int. J. Pattern Recog. Artif. Intell. 30(08), 1659024.1-1659024.22 (2016)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community detection in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171–184 (2016)

    Article  Google Scholar 

  47. 47.

    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    MATH  Article  Google Scholar 

  48. 48.

    Wla, B., Nla, B., Li, N., Wza, B., Wd, C.: Local community detection by the nearest nodes with greater centrality. Inf. Sci. 517, 377–392 (2020)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Xu, G., Zhang, Y., Li, L.: Web Mining and Social Networking. Springer US (2011)

    Book  Google Scholar 

  50. 50.

    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  51. 51.

    Yi, X., Chen, H., Lan, J.: Multi-objective community detection algorithms based on correlation of evaluation indices. J. Chin. Comput. Syst. 41(9), 1806–1811 (2020)

    Google Scholar 

  52. 52.

    Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clustering. In: ACM SIGKDD International Conference, pp. 555–564 (2017)

  53. 53.

    Yu, Z., Chen, J., Guo, K., Chen, Y.: Overlapping community detection based on influence and seeds extension. Chin. J. Electron. 47(01), 155–162 (2019)

    Google Scholar 

  54. 54.

    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, L.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, pp.1–10 (2010)

  55. 55.

    Zhan, Q., Zhang, J., Yu, P., Xie, J.: Community detection for emerging social networks. World Wide Web 20(6), 1409–1441 (2017)

    Article  Google Scholar 

  56. 56.

    Zhang, Y., Liu, Y., Li, Q., Jin, R.: LILPA: A label importance based label propagation algorithm for community detection with application to core drug discovery. Neurocomputing 413(9), 107–133 (2020)

    Article  Google Scholar 

  57. 57.

    Zhang, Y., Xu Yu, J., Hou, J.: Web communities: analysis and construction. Springer Science & Business Media (2006)

  58. 58.

    Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large networks with propinquity dynamics. In: SIGKDD, pp.997–1006 (2009)

Download references


This research is partially supported by the National NSFC(61807009, U1811263, 61772211), the Key Laboratory of the Education Department of Guangdong Province (2019KSYS009), and the Special projects in key fields of Guangdong Department of Education (2020ZDZX1062).

Author information



Corresponding author

Correspondence to Chunying Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Tang, Y., Li, C. et al. A fast local community detection algorithm in complex networks. World Wide Web (2021).

Download citation


  • Complex networks
  • Local community detection
  • Label propagation
  • Parallel sliding windows model
  • Overlapping community