Skip to main content
Log in

Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture

  • Published:
World Wide Web Aims and scope Submit manuscript


It is critical but challenging to provide efficient information services to support disaster-response operations in disaster-hit areas. A UAVFog-assisted data-driven disaster-response architecture, which combines unmanned aerial vehicles (UAVs) and fog computing paradigm, showed many advantages in response latency and on-the-fly deployment. This paper aims to jointly optimize the deployment of service functions (SFs) and the task scheduling at UAVFog nodes to minimize the task response latency. After introducing the collaboration structure between UAVFog nodes, joint SF deployment and task scheduling is formulated as an optimization problem. Then, three algorithms are put forward to tackle the problem: 1) Dependency and topology-aware SF deployment (DeToSFD) algorithm is developed to determine the initial deployment location of each SF; 2) Context-aware greedy task scheduling (CoGTS) algorithm is put forward to schedule an arrived task; 3) Congestion-aware SF reallocation (CoSFR) algorithm is developed to reallocate SFs in case of congestion at an instance of an SF. Finally, a series of experiments are conducted to evaluate the performance of the proposed algorithms. Experimental results show that DeToSFD, CoGTS, and CoSFR could greatly reduce the task response latency of the UAVFog system in diverse parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  1. Al-Rakhami, M., Gumaei, A., Alsahli, M., Hassan, M.M., Alamri, A., Guerrieri, A., Fortino, G.: LW-Coedge: A lightweight virtualization model and collaboration process for edge computing. World Wide Web 23, 1341–1360 (2020)

    Article  Google Scholar 

  2. Al-Turjman, F., Abujubbeh, M., Malekloo, A., Mostarda, L.: UAVs assessment in software-defined iot networks: An overview. Comput. Commun. 150, 519–536 (2020)

    Article  Google Scholar 

  3. Alves, M.P., Delicato, F.C, Santos, I.L, Pires, P.F: LW-Coedge: a lightweight virtualization model and collaboration process for edge computing. World Wide Web 23, 1127–1175 (2020)

    Article  Google Scholar 

  4. Arbia, D.B., Alam, M.M., Kadri, A., Hamida, E.B., Attia, R.: Enhanced IoT-based end-to-end emergency and disaster relief system. J. Sens. Actuator Netw. 6(3) (2017)

  5. Cheng, N., Xu, W., Shi, W., Zhou, Y., Lu, N., Zhou, H., Shen, X.: Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities. IEEE Commun. Mag. 56(8), 26–32 (2018)

    Article  Google Scholar 

  6. Deruyck, M., Wyckmans, J., Joseph, W., Martens, L.: Designing UAV-aided emergency networks for large-scale disaster scenarios. EURASIP J. Wirel. Commun. Netw. 2018(1), 79 (2018)

    Article  Google Scholar 

  7. Erdelj, M., Natalizio, E., Chowdhury, K.R., Akyildiz, I.F.: Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Comput. 16(1), 24–32 (2017)

    Article  Google Scholar 

  8. Ge, Y.-F., Yu, W.-J., Cao, J., Wang, H., Zhan, Z.-H., Zhang, Y., Zhang, J.: Distributed memetic algorithm for outsourced database fragmentation. IEEE Trans Cybern 1–14 (2020)

  9. Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M., Li, G.Y.: Joint offloading and trajectory design for UAV-enabled mobile edge computing systems. IEEE Int Things J 6(2), 1879–1892 (2018)

    Article  Google Scholar 

  10. Hu, J., Jiang, M., Zhang, Q., Li, Q., Qin, J.: Joint optimization of UAV position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Trans. Veh. Technol. 68(7), 7231–7235 (2019)

    Article  Google Scholar 

  11. Hua, M., Wang, Y., Li, C., Huang, Y., Yang, L.: UAV-Aided mobile edge computing systems with one by one access scheme. IEEE Trans. Green Commun. Netw. 3(3), 664–678 (2019)

    Article  Google Scholar 

  12. Huang, J., Peng, M., Wang, H., Cao, J., Gao, W., Zhang, X.: A probabilistic method for emerging topic tracking in microblog stream. World Wide Web 20, 325–350 (2017)

    Article  Google Scholar 

  13. Król, M., Natalizio, E., Zema, N.R.: Tag-Based Data Exchange in Disaster Relief Scenarios. In: 2017 international conference on computing, networking and communications (ICNC), pp. 1068–1072 (2017)

  14. Li, J.-Y., Zhan, Z.-H., Wang, H., Zhang, J.: Data-driven evolutionary algorithm with perturbation-based ensemble surrogates. IEEE Trans Cybern 1–13 (2020)

  15. Liu, B., Zhu, Q., Zhu, H.: Trajectory optimization and resource allocation for UAV-assisted relaying communications. Wirel. Netw. 26(1), 739–749 (2020)

    Article  Google Scholar 

  16. Lu, Z., Cao, G., La Porta, T.: Teamphone: Networking smartphones for disaster recovery. IEEE Trans. Mob. Comput. 16(12), 3554–3567 (2017)

    Article  Google Scholar 

  17. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Mobile unmanned aerial vehicles (uavs) for energy-efficient internet of things communications. IEEE Trans. Wirel. Commun. 16(11), 7574–7589 (2017)

    Article  Google Scholar 

  18. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recommendation based on app permissions. World Wide Web 21, 89–104 (2018)

    Article  Google Scholar 

  19. Tang, Q., Chang, L., Yang, K., Wang, K., Wang, J., Sharma, P.K.: Task number maximization offloading strategy seamlessly adapted to UAV scenario. Comput. Commun. 151, 19–30 (2020)

    Article  Google Scholar 

  20. Wei, X., Li, L., Tang, C., Subramaniam, S.: Uavfog-assisted data-driven disaster response: Architecture, Use Case, and Challenges. In: 21St international conference on web information systems engineering (WISE2020), pp. 591–606 (2020)

  21. Wei, X., Liu, J., Wang, Y., Tang, C., Hu, Y.: Wireless edge caching based on content similarity in dynamic environments. J. Syst. Archit. 115, 102000 (2021).

    Article  Google Scholar 

  22. Wei, X., Tang, C., Fan, J., Subramaniam, S.: Joint optimization of energy consumption and delay in cloud-to-thing continuum. IEEE Int. Things J. 6(2), 2325–2337 (2019)

    Article  Google Scholar 

  23. Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 17 (3), 2109–2121 (2018)

    Article  Google Scholar 

  24. Yang, Z., Pan, C., Wang, K., Shikh-Bahaei, M.: Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Trans. Wirel. Commun. 18(9), 4576–4589 (2019)

    Article  Google Scholar 

  25. Zeng, Y., Xu, J., Zhang, R.: Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun. 18(4), 2329–2345 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chaogang Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2020 Guest Editors: Hua Wang, Zhisheng Huang, and Wouter Beek

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Li, L., Cai, L. et al. Joint service-function deployment and task scheduling in UAVFog-assisted data-driven disaster response architecture. World Wide Web 25, 309–333 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: