Skip to main content

Efficient continual cohesive subgraph search in large temporal graphs


Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

  2. 2.

  3. 3.


  1. 1.

    Akbas, E., Zhao, P.: Truss-based community search: A truss-equivalence based indexing approach. Proc. VLDB Endow. 10(11), 1298–1309 (2017)

    Article  Google Scholar 

  2. 2.

    Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective community search. Data Min. Knowl. Discov. 29(5), 1406–1433 (2015)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bi, F., Chang, L., Lin, X., Zhang, W.: An optimal and progressive approach to online search of top-k influential communities. Proc. VLDB Endowment 11(9) (2018)

  4. 4.

    Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for computing steiner components with maximum connectivity. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 459–474 (2015)

  5. 5.

    Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maximum co-located community search in large scale social networks. Proc. VLDB Endow. 11(10), 1233–1246 (2018)

    Article  Google Scholar 

  6. 6.

    Chu, L., Zhang, Y., Yang, Y., Wang, L., Pei, J.: Online density bursting subgraph detection from temporal graphs. Proc. VLDB Endow. 12(13), 2353–2365 (2019)

    Article  Google Scholar 

  7. 7.

    Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp. 991–1002 (2014)

  8. 8.

    Fang, Y., Cheng, R., Chen, Y., Luo, S., Hu, J.: Effective and efficient attributed community search. VLDB J. 26(6), 803–828 (2017)

    Article  Google Scholar 

  9. 9.

    Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. Proc. VLDB Endow. 9(12), 1233–1244 (2016)

    Article  Google Scholar 

  10. 10.

    Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., Lin, X.: A survey of community search over big graphs. VLDB J. 29 (1), 353–392 (2020)

    Article  Google Scholar 

  11. 11.

    Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., Chen, X.: On spatial-aware community search. IEEE Trans. Knowl. Data Eng. 31 (4), 783–798 (2018)

    Article  Google Scholar 

  12. 12.

    Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effective and efficient community search over large directed graphs. IEEE Trans. Knowl. Data Eng. 31(11), 2093–2107 (2018)

    Article  Google Scholar 

  13. 13.

    Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community search over large heterogeneous information networks. Proc. VLDB Endow. 13(6), 854–867 (2020)

    Article  Google Scholar 

  14. 14.

    Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., Gullo, F.: Mining (maximal) span-cores from temporal networks. In: Proceedings of the 27th acm international conference on information and knowledge management, pp. 107–116 (2018)

  15. 15.

    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519 (3), 97–125 (2012)

    Article  Google Scholar 

  16. 16.

    Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: Querying minimal steiner maximum-connected subgraphs in large graphs. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1241–1250 (2016)

  17. 17.

    Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp. 1311–1322 (2014)

  18. 18.

    Huang, X., Lakshmanan, L.V.: Attribute-driven community search. Proc. VLDB Endow. 10(9), 949–960 (2017)

    Article  Google Scholar 

  19. 19.

    Huang, X., Lakshmanan, L.V., Yu, J.X., Cheng, H.: Approximate closest community search in networks. Proc. VLDB Endow. 9(4), 276–287 (2015)

    Article  Google Scholar 

  20. 20.

    Lahiri, M., Berger-Wolf, T.Y.: Mining Periodic Behavior in Dynamic Social Networks. In: 2008 Eighth IEEE International Conference on Data Mining, pp 373–382. IEEE (2008)

  21. 21.

    Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 467–476 (2009)

  22. 22.

    Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A Survey of Algorithms for Dense Subgraph Discovery. In: Managing and Mining Graph Data, pp. 303–336. Springer (2010)

  23. 23.

    Li, C., Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficient progressive minimum k-core search. Proc. VLDB Endow. 13(3), 362–375 (2019)

    Article  Google Scholar 

  24. 24.

    Li, R.H., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: Proceedings of the 2018 International Conference on Management of Data, pp. 457–472 (2018)

  25. 25.

    Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. Proc. VLDB Endow. 8(5), 509–520 (2015)

    Article  Google Scholar 

  26. 26.

    Li, R.H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent Community Search in Temporal Networks. In: 2018 IEEE 34Th International Conference on Data Engineering (ICDE), pp. 797–808. IEEE (2018)

  27. 27.

    Liu, Q., Zhao, M., Huang, X., Xu, J., Gao, Y.: Truss-based community search over large directed graphs. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2183–2197 (2020)

  28. 28.

    Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: Vac: Vertex-centric attributed community search. In: 2020 IEEE 36Th International Conference on Data Engineering (ICDE), pp. 937–948. IEEE (2020)

  29. 29.

    Ma, S., Hu, R., Wang, L., Lin, X., Huai, J.: Fast computation of dense temporal subgraphs. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 361–372. IEEE (2017)

  30. 30.

    Qin, H., Li, R.H., Wang, G., Qin, L., Cheng, Y., Yuan, Y.: Mining periodic cliques in temporal networks. In: 2019 IEEE 35Th International Conference on Data Engineering (ICDE), pp. 1130–1141. IEEE (2019)

  31. 31.

    Qin, H., Li, R.H., Wang, G., Qin, L., Yuan, Y., Zhang, Z.: Mining bursting communities in temporal graphs. arXiv:1911.02780 (2019)

  32. 32.

    Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf. Syst. 62(4), 1611–1639 (2020)

    Article  Google Scholar 

  33. 33.

    Sekara, V., Stopczynski, A., Lehmann, S.: Fundamental structures of dynamic social networks. Proc. Nat. Acad. Sci. 113(36), 9977–9982 (2016)

    Article  Google Scholar 

  34. 34.

    Semertzidis, K., Pitoura, E., Terzi, E., Tsaparas, P.: Finding lasting dense subgraphs. Data Min. Knowl. Disc. 33(5), 1417–1445 (2019)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 939–948 (2010)

  36. 36.

    Sun, H., Huang, R., Jia, X., He, L., Sun, M., Wang, P., Sun, Z., Huang, J.: Community search for multiple nodes on attribute graphs. Knowl.-Based Syst. 193, 105393 (2020)

    Article  Google Scholar 

  37. 37.

    Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded K-Cores. In: 2018 IEEE 34Th International Conference on Data Engineering (ICDE), pp. 233–244. IEEE (2018)

  38. 38.

    Wang, Z., Wang, C., Wang, W., Gu, X., Li, B., Meng, D.: Adaptive relation discovery from focusing seeds on large networks. In: 2020 IEEE 36Th International Conference on Data Engineering (ICDE), pp. 217–228. IEEE (2020)

  39. 39.

    Wang, Z., Wang, W., Wang, C., Gu, X., Li, B., Meng, D.: Community focusing: yet another query-dependent community detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp 329–337 (2019)

  40. 40.

    Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition in large temporal graphs. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 649–658. IEEE (2015)

  41. 41.

    Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local community detection: on free rider effect and its elimination. Proc. VLDB Endow. 8(7), 798–809 (2015)

    Article  Google Scholar 

  42. 42.

    Wu, Y., Zhu, X., Li, L., Fan, W., Jin, R., Zhang, X.: Mining dual networks: models, algorithms, and applications. ACM Trans. Knowl. Discov. Data (TKDD) 10(4), 1–37 (2016)

    Article  Google Scholar 

  43. 43.

    Yu, C., Zhang, Z., Lin, C., Wu, Y.J.: Can data-driven precision marketing promote user ad clicks? evidence from advertising in wechat moments. Indust. Market. Manag (2019)

  44. 44.

    Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique percolation community search in networks. IEEE Trans. Knowl. Data Eng. 30(5), 922–935 (2017)

    Article  Google Scholar 

Download references


This research is partially supported by the National NSFC (61902004, 61672041, 61772124, 61732003, 61977001), National Key Research and Development Program of China (2018YFB1004402), Project of Beijing Municipal Education Commission (KM202010009009) and the Start-up Funds of North China University of Technology.

Author information



Corresponding author

Correspondence to Yuhai Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, J., Zhao, H. et al. Efficient continual cohesive subgraph search in large temporal graphs. World Wide Web (2021).

Download citation


  • (𝜃 τ)-continual k-core model
  • Cohesive subgraph search (CSS)
  • Exact and approximate algorithms
  • Large temporal graphs