Skip to main content
Log in

VEK: a vertex-oriented approach for edge k-core problem

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

The stability of a network has been widely studied as an important indicator of network status, e.g., reliability and activity. A popular model for measuring the (structural) stability of a network is k-core , the maximal induced subgraph in which every vertex has at least k neighbors in the subgraph. As the size of k-core well estimates the stability of a network, the edge k-core problem is studied to enhance network stability: given a graph G, an integer k and a budget b, add b edges to non-adjacent vertex pairs in G such that the number of vertices in the k-core is maximized. The state-of-the-art solution is a greedy algorithm (named EKC) by finding a promising vertex pair at each iteration, while the algorithm is still not efficient enough on large graphs. In this paper, we propose a novel vertex-oriented heuristic algorithm (named VEK), with a well-designed scoring function to guide the search order. Effective optimization techniques are proposed to prune unpromising candidates and reuse the intermediate results. The experiments on 9 real-life datasets demonstrate the runtime of our proposed VEK is faster than the state-of-the-art algorithm EKC by 1-3 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Availability of data and material

All the datasets used in this paper is public and every one can access to it.

Code Availability

All the source codes will be shared online after the manuscript is accepted.

Notes

  1. http://networkrepository.com/

  2. https://snap.stanford.edu/data/

References

  1. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma. 4, 2 (2003)

    Article  Google Scholar 

  2. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)

  3. Bhawalkar, K., Kleinberg, J.M., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: The anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    Article  Google Scholar 

  5. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)

  6. Cheng, J., Ke, Y., Fu, A.W., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks by h*-graph. In: SIGMOD, pp. 447–458 (2010)

  7. Chitnis, R., Talmon, N.: Can we create large k-cores by adding few edges?. In: CSR, pp. 78–89 (2018)

  8. Chu, D., Zhang, F., Lin, X., Zhang, W., Zhang, Y., Xia, Y., Zhang, C.: Finding the best k in core decomposition: A time and space optimal solution. In: ICDE, pp. 685–696 (2020)

  9. Chwe, M.S.Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67(1), 1–16 (2000)

    Article  MathSciNet  Google Scholar 

  10. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report 16, 3–1 (2008)

    Google Scholar 

  11. Dasari, NS., Ranjan, D., Zubair, M.: Park: An efficient algorithm for k-core decomposition on multicore processors. In: 2014 IEEE International Conference on Big Data, pp 9–16. IEEE Computer Society (2014)

  12. Elsharkawy, S., Hassan, G., Nabhan, T., Roushdy, M.: Effectiveness of the k-core nodes as seeds for influence maximisation in dynamic cascades. Int. J. Comput., 2 (2017)

  13. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)

    Google Scholar 

  14. Kabir, H., Madduri, K.: Parallel k-core decomposition on multicore platforms. In: IPDPS Workshops, pp 1482–1491. IEEE Computer Society (2017)

  15. Kapron, B.M., Srivastava, G., Venkatesh, S.: Social network anonymization via edge addition. In: ASONAM, pp 155–162. IEEE Computer Society (2011)

  16. Khaouid, W., Barsky, M., Venkatesh, S., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  17. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)

    Article  Google Scholar 

  18. Lai, Y., Tian, C., Ko, T.: Edge addition number of cartesian product of paths and cycles. Electron. Notes Discret. Math. 22, 439–444 (2005)

    Article  Google Scholar 

  19. Li, R., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp 457–472 (2018)

  20. Li, R., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5), 509–520 (2015)

    Google Scholar 

  21. Lin, Z., Zhang, F., Lin, X., Zhang, W., Tian, Z.: Hierarchical core maintenance on large dynamic graphs. In: VLDB, vol. 14, pp 757–770 (2021)

  22. Linghu, Q., Zhang, F., Lin, X., Zhang, W., Zhang, Y.: Global reinforcement of social networks: The anchored coreness problem. In: SIGMOD, pp 2211–2226 (2020)

  23. Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X.: Corecube: Core decomposition in multilayer graphs. In: WISE 2019, pp 694–710 (2019)

  24. Liu, B., Zhang, F., Zhang, W., Lin, X., Zhang, Y.: Efficient community search with size constraint. In: ICDE (2021)

  25. Malliaros, F.D., Giatsidis, C., Papadopoulos, A.N., Vazirgiannis, M.: The core decomposition of networks: theory, algorithms and applications. VLDB J. 29(1), 61–92 (2020)

    Article  Google Scholar 

  26. Malliaros, F.D., Rossi, M.E.G., Vazirgiannis, M.: Locating influential nodes in complex networks. Scientific Reports 6, 19307 (2016)

    Article  Google Scholar 

  27. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)

  28. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

    Article  MathSciNet  Google Scholar 

  29. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  30. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: SIGKDD, pp. 228–238 (2005)

  31. Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  32. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Corescope: Graph mining using k-core analysis - patterns, anomalies and algorithms. In: ICDM, pp. 469–478 (2016)

  33. Suady, S.A., Najim, A.A.: On edge-addition problem. Journal of Education for Pure Science 4(1), 26–36 (2014)

    Google Scholar 

  34. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.M.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. U.S.A. 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  35. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  36. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In: 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pp. 233–244 (2018)

  37. Wang, K., Wang, S., Cao, X., Qin, L.: Efficient radius-bounded community search in geo-social networks. IEEE Transactions on Knowledge and Data Engineering (2020)

  38. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

  39. Yu, W., Lin, X., Zhang, W.: Fast incremental simrank on link-evolving graphs. In: IEEE 30th International Conference on Data Engineering, Chicago, pp. 304–315 (2014)

  40. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique percolation community search in networks. IEEE Trans. Knowl. Data Eng. 30(5), 922–935 (2018)

    Article  Google Scholar 

  41. Zhang, C., Zhang, F., Zhang, W., Liu, B., Zhang, Y., Qin, L., Lin, X.: Exploring finer granularity within the cores: Efficient (k, p)-core computation. In: ICDE, pp. 181–192 (2020)

  42. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB 10 (6), 649–660 (2017)

    Google Scholar 

  43. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: The collapsed k-core problem. In: AAAI, pp. 245–251 (2017)

  44. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently reinforcing social networks over user engagement and tie strength. In: ICDE, pp. 557–568 (2018)

  45. Zhang, H., Wang, X., Fan, H., Cai, T., Li, J., Li, X., Leung, V.C.M.: Anchor vertex selection for enhanced reliability of traffic offloading service in edge-enabled mobile P2P social networks. J. Commun. Inf. Networks 5(2), 217–224 (2020)

    Google Scholar 

  46. Zhou, Z., Zhang, F., Lin, X., Zhang, W., Chen, C.: K-core maximization: An edge addition approach. In: IJCAI, pp. 4867–4873 (2019)

Download references

Acknowledgments

Fan Zhang is supported by National Natural Science Foundation of China under Grant 62002073, and Guangzhou Basic and Applied Basic Research Foundation under Grant 202102020675.

Funding

The grants declared in Acknowledgements were received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Large Scale Graph Data Analytics

Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

Zhongxin Zhou and Wenchao Zhang are the joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, W., Zhang, F. et al. VEK: a vertex-oriented approach for edge k-core problem. World Wide Web 25, 723–740 (2022). https://doi.org/10.1007/s11280-021-00907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00907-1

Keywords

Navigation