Skip to main content

A generation probability based percolation network alignment method

Abstract

With the rapid growth of Internet industry, online social networks have become an indivisible part of our lives. To enjoy different kinds of services, people prefer to take part in multiple online social networks rather than only one. Therefore, identifying the same user across networks, formally named as social network alignment, has become a hot research topic. In this paper, we use social network structure to solve this problem. Firstly, inspired by the aligned network model (a mathematical model to formalize the real-world aligned networks), we present a novel assumption for network alignment. We suppose that the real-world aligned networks can be seen as generated from many different underlying social networks, depending on the matching between users, and the correctly aligned networks ought to own the maximum generation probability. Secondly, a Generation probability based Percolation Network Alignment method (GPNA) is presented. In GPNA, only the candidates, which can increase the generation probability, are regarded as the matched users. At last, a series of experiments are conducted to demonstrate the good performance of GPNA on both synthetic networks and real-world networks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. science 286(5439), 509–512 (1999)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: 2009 Ninth IEEE International Conference on Data Mining, pp 705–710, IEEE (2009)

  3. 3.

    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), P10008 (2008)

    Article  Google Scholar 

  4. 4.

    Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE transactions on knowledge and data engineering 20(2), 172–188 (2007)

    Article  Google Scholar 

  5. 5.

    Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1503–1511 (2020)

  6. 6.

    Chen, Z., Yu, X., Song, B., Gao, J., Hu, X., Yang, W-S: Community-based network alignment for large attributed network. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 587–596, ACM (2017)

  7. 7.

    Chiasserini, C-F, Garetto, M., Leonardi, E.: De-anonymizing clustered social networks by percolation graph matching. ACM Transactions on Knowledge Discovery from Data (TKDD) 12(2), 21 (2018)

    Article  Google Scholar 

  8. 8.

    Chu, X., Fan, X., Yao, D., Zhu, Z., Huang, J., Bi, J.: Cross-network embedding for multi-network alignment. In: The World Wide Web Conference, pp 273–284, ACM (2019)

  9. 9.

    Dai, O.E., Cullina, D., Kiyavash, N., Grossglauser, M.: Analysis of a canonical labeling algorithm for the alignment of correlated erdos-rényi graphs. Proceedings of the ACM on Measurement and Analysis of Computing Systems 3(2), 36 (2019)

    Article  Google Scholar 

  10. 10.

    Erdös, P, Rényi, A: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Feizi, S., Quon, G., Medard, M., Kellis, M., Jadbabaie, A.: Spectral alignment of networks (2015)

  12. 12.

    Feng, S., Shen, D., Nie, T., Kou, Y., He, J., Yu, G.: Inferring anchor links based on social network structure. IEEE Access 6, 17340–17353 (2018)

    Article  Google Scholar 

  13. 13.

    Fu, H., Zhang, A., Xie, X.: Effective social graph deanonymization based on graph structure and descriptive information. ACM Transactions on Intelligent Systems and Technology (TIST) 6(4), 49 (2015)

    Google Scholar 

  14. 14.

    Fu, S., Wang, G., Xia, S., Liu, L.: Deep multi-granularity graph embedding for user identity linkage across social networks. Knowl.-Based Syst. 193, 105301 (2020)

    Article  Google Scholar 

  15. 15.

    Heimann, M., Shen, H., Safavi, T., Koutra, D.: Regal: Representation learning-based graph alignment. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 117–126, ACM (2018)

  16. 16.

    Karrer, B., Newman, Mark EJ: Stochastic blockmodels and community structure in networks. Physical review E 83(1), 016107 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kazemi, E., Grossglauser, M.: Mpgm: Scalable and accurate multiple network alignment. IEEE/ACM transactions on computational biology and bioinformatics (2019)

  18. 18.

    Kazemi, E., Hassani, S.H., Grossglauser, M.: Growing a graph matching from a handful of seeds. Proceedings of the VLDB Endowment 8(10), 1010–1021 (2015)

    Article  Google Scholar 

  19. 19.

    Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp 179–188, ACM (2013)

  20. 20.

    Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks. Proceedings of the VLDB Endowment 7(5), 377–388 (2014)

    Article  Google Scholar 

  21. 21.

    Li, C., Wang, S., Yu, P.S., Zheng, L., Zhang, X., Li, Z., Liang, Y.: Distribution distance minimization for unsupervised user identity linkage. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 447–456, ACM (2018)

  22. 22.

    Li, H., Chen, Q., Zhu, H., Ma, D., Wen, H., Shen, X.S.: Privacy leakage via de-anonymization and aggregation in heterogeneous social networks. IEEE Transactions on Dependable and Secure Computing (2017)

  23. 23.

    Li, Y., Peng, Y., Zhang, Z., Yin, H., Xu, Q.: Matching user accounts across social networks based on username and display name. World Wide Web 22(3), 1075–1097 (2019)

    Article  Google Scholar 

  24. 24.

    Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding.. In: IJCAI, pp 1774–1780 (2016)

  25. 25.

    Lubars, J., Srikant, R.: Correcting the output of approximate graph matching algorithms. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp 1745–1753, IEEE (2018)

  26. 26.

    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Security and Privacy, 2009 30th IEEE Symposium on, pp 173–187, IEEE (2009)

  27. 27.

    Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for graph similarity. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

  28. 28.

    Nilizadeh, S., Kapadia, A., Ahn, Y-Y: Community-enhanced de-anonymization of online social networks. In: Proceedings of the 2014 acm sigsac conference on computer and communications security, pp 537–548, ACM (2014)

  29. 29.

    Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure in complex networks. arXiv preprint physics.soc-ph/0707.0609 (2007)

  30. 30.

    Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  31. 31.

    Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the evolution of user interaction in facebook. In: Acm Workshop on Online Social Networks (2009)

  32. 32.

    Vosecky, J., Hong, D., Shen, V.Y.: User identification across multiple social networks. In: 2009 first international conference on networked digital technologies, pp 360–365, IEEE (2009)

  33. 33.

    Wang, Y., Feng, C., Chen, L., Yin, H., Guo, C., Chu, Y.: User identity linkage across social networks via linked heterogeneous network embedding. World Wide Web, pp. 1–22 (2018)

  34. 34.

    Yan, J., Yang, S., Hancock, E.R.: Learning for graph matching and related combinatorial optimization problems. In: International Joint Conference on Artificial Intelligence, York (2020)

  35. 35.

    Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Proceedings of the first ACM conference on Online social networks, pp 119–130, ACM (2013)

  36. 36.

    Yu, X., Sun, Y., Bertino, E., Li, X.: Modeling user intrinsic characteristic on social media for identity linkage. ACM Transactions on Social Computing 1(3), 11 (2018)

    Article  Google Scholar 

  37. 37.

    Zafarani, R., Liu, H.: Connecting corresponding identities across communities. In: Third International AAAI Conference on Weblogs and Social Media (2009)

  38. 38.

    Zhang, J., Philip, S.Y.: Integrated anchor and social link predictions across social networks.. In: IJCAI, pp 2125–2132 (2015)

  39. 39.

    Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: Cosnet: Connecting heterogeneous social networks with local and global consistency. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1485–1494, ACM (2015)

  40. 40.

    Zhang, Z., Gu, Q., Yue, T., Su, S.: Identifying the same person across two similar social networks in a unified way: Globally and locally. Inform. Sci. 394, 53–67 (2017)

    Article  Google Scholar 

  41. 41.

    Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification of online messages: Writing-style features and classification techniques. Journal of the American society for information science and technology 57 (3), 378–393 (2006)

    Article  Google Scholar 

  42. 42.

    Zhong, Z., Cao, Y., Guo, M., Nie, Z.: Colink: An unsupervised framework for user identity linkage. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

  43. 43.

    Zhou, F., Wen, Z., Trajcevski, G., Zhang, K., Zhong, T., Liu, F.: Disentangled network alignment with matching explainability. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp 1360–1368, IEEE (2019)

  44. 44.

    Zhou, F., Zhang, K., Xie, S., Luo, X.: Learning to correlate accounts across online social networks: An embedding-based approach. INFORMS J. Comput. 32(3), 714–729 (2020)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Zhou, X., Liang, X., Du, X., Zhao, J.: Structure based user identification across social networks. IEEE Trans. Knowl. Data Eng. 30(6), 1178–1191 (2017)

    Article  Google Scholar 

  46. 46.

    Zhou, X., Liang, X., Zhang, H., Ma, Y.: Cross-platform identification of anonymous identical users in multiple social media networks. IEEE transactions on knowledge and data engineering 28(2), 411–424 (2015)

    Article  Google Scholar 

  47. 47.

    Zhu, Y., Qin, L., Yu, J.X., Ke, Y., Lin, X.: High efficiency and quality: large graphs matching. The VLDB Journal—The International Journal on Very Large Data Bases 22(3), 345–368 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by in part by the National Natural Science Foundation of China under Grant 62072084 and Grant 62072086.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuo Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Shen, D., Nie, T. et al. A generation probability based percolation network alignment method. World Wide Web (2021). https://doi.org/10.1007/s11280-021-00893-4

Download citation

Keywords

  • Network alignment
  • User identification
  • Network structure
  • Social network
  • Generation probability