Skip to main content
Log in

Spectral clustering via half-quadratic optimization

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Spectral clustering has been demonstrated to often outperform K-means clustering in real applications because it improves the similarity measurement of K-means clustering. However, previous spectral clustering method still suffers from the following issues: 1) easily being affected by outliers; 2) constructing the affinity matrix from original data which often contains redundant features and outliers; and 3) unable to automatically specify the cluster number. This paper focuses on address these issues by proposing a new clustering algorithm along with the technique of half-quadratic optimization. Specifically, the proposed method learns the affinity matrix from low-dimensional space of original data, which is obtained by using a robust estimator to remove the influence of outliers as well as a sparsity regularization to remove redundant features. Moreover, the proposed method employs the 2,1-norm regularization to automatically learn the cluster number according to the data distribution. Experimental results on both synthetic and real data sets demonstrated that the proposed method outperforms the state-of-the-art methods in terms of clustering performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alberto, P., Casbon, J.A., Saqi, M.A.S.: Spectral clustering of protein sequences. Nucleic Acids Res. 34(5), 1571–1580 (2006)

    Article  Google Scholar 

  2. Boyd, V., Faybusovich, L.: Convex optimization. IEEE Trans. Autom. Control 51(11), 1859–1859 (2006)

    Article  Google Scholar 

  3. Charbonnier, P., Blancfraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

    Article  Google Scholar 

  4. Edgar, R.C.: Search and clustering orders of magnitude faster than blast. Bioinformatics 26(19), 2460 (2010)

    Article  Google Scholar 

  5. Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  6. Goh, A., Vidal, R.: Locally linear manifold clustering. Journal of Machine Learning Research (2009)

  7. Guangcan, L., Zhouchen, L., Shuicheng, Y., Ju, S., Yu, Y., Yi, M.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  8. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. In: ECCV, pp. 492–503 (2008)

  9. He, R., Hu, B., Yuan, X., Wang, L.: M-Estimators and Half-Quadratic minimization (2014)

  10. Hu, H., Lin, Z., Feng, J., Zhou, J.: Smooth representation clustering. In: CVPR, pp. 3834–3841 (2014)

  11. Hu, M., Yang, Y., Shen, F., Xie, N., Hong, R., Shen, H.T.: Collective reconstructive embeddings for cross-modal hashing. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2018.2890144 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huber, P.J.: Robust statistics. Wiley, New York (2011)

  13. Ji, Z., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4), 539–568 (2014)

    Article  Google Scholar 

  14. Junye, G., Liu, M., Zhang, D.: Spectral clustering algorithm based on effective distance. Journal of Frontiers of Computer Science & Technology (2014)

  15. Law, M.H.C., Figueiredo, J., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 26(9), 1154–1166 (2004)

    Article  Google Scholar 

  16. Lei, C., Zhu, X.: Unsupervised feature selection via local structure learning and sparse learning. Multimed Tools Appl 77(22), 29605–29622 (2018)

    Article  Google Scholar 

  17. Li, C.G., You, C., Vidal, R.: Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework. IEEE Trans. Image Process. 26 (6), 2988–3001 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liu, X.Y., Jing-Wei, L.I., Hong, Y.U., You, Q.Z., Lin, H.F.: Adaptive spectral clustering based on shared nearest neighbors. J. Chin. Comput. Syst. 32(9), 1876–1880 (2011)

    Google Scholar 

  19. Liu, G., Lin, Z., Yan, S., Ju, S., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1), 171 (2013)

    Article  Google Scholar 

  20. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS, pp .849–856 (2001)

  21. Nie, F., Wang, X., Jordan, M.I., Huang, H.: The constrained laplacian rank algorithm for graph-based clustering. In: AAAI, pp. 1969–1976 (2016)

  22. Nikolova, M., Ng, MK.: Analysis of Half-Quadratic minimization methods for signal and image recovery. Society for Industrial and Applied Mathematics (2005)

  23. Peng, Y., Zhu, Q., Huang, B.: Spectral clustering with density sensitive similarity function. Knowl.-Based Syst. 24(5), 621–628 (2011)

    Article  Google Scholar 

  24. Roth, V., Lange, T.: Feature selection in clustering problems. In: NIPS (2003)

  25. Shah, S.A., Koltun, V.: Robust continuous clustering. Proc Natl Acad Sci U SA 114(37), 9814–9819 (2017)

    Article  Google Scholar 

  26. Szu-Hao, H., Yi-Hong, C., Shang-Hong, L., Novak, C.L.: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal mri. IEEE Trans. Med. Imaging 28(10), 1595–1605 (2009)

    Article  Google Scholar 

  27. Tao, X., Li, Y., Zhong, N.: A personalized ontology model for Web information gathering. IEEE Trans Knowl Data Eng 23(4), 496–511 (2010)

    Article  Google Scholar 

  28. Wang, R., Zong, M.: Joint self-representation and subspace learning for unsupervised feature selection. World Wide Web 21(6), 1745–1758 (2018)

    Article  Google Scholar 

  29. Wang, W.W., Xiao-Ping, L.I., Feng, X.C., Si, Qi W.: A survey on sparse subspace clustering. Acta Autom. Sin. 41(8), 1373–1384 (2015)

    Google Scholar 

  30. Wang, L., Zheng, K., Tao, X., Han, X.: Affinity propagation clustering algorithm based on large-scale data-set. International Journal of Computers & Applications (3), 1–6 (2018)

  31. Wang, R., Ji, W., Liu, M., Wang, X., Weng, J., Deng, S., Gao, S., Yuan, C.-a.: Review on mining data from multiple data sources. Pattern Recogn. Lett. 109, 120–128 (2018)

    Article  Google Scholar 

  32. Wang, R., Ji, W., Song, B.: Durable relationship prediction and description using a large dynamic graph. World Wide Web 21(6), 1575–1600 (2018)

    Article  Google Scholar 

  33. Yan, J., Pollefeys, M.: A general framework for motion segmentation Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: ECCV, pp. 94–106 (2006)

  34. Yi, B., Yang, Y., Shen, F., Xie, N., Shen, H.T., Li, X.: Describing video with attention based bidirectional lstm. IEEE Transactions on Cybernetics (2018)

  35. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS, pp. 1601–1608 (2005)

  36. Zhang, S., Li, X., Ming, Z., Zhu, X., Cheng, D.: Learning k for knn classification. Acm Trans Intell Syst Technol 8(3), 43 (2017)

    Google Scholar 

  37. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient knn classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst 29 (5), 1774–1785 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, Cong: Dynamic graph learning for spectral feature selection. Multimed Tools Appl 77(22), 29739–29755 (2018)

    Article  Google Scholar 

  39. Zhou, X., Shen, F., Liu, Li, Liu, W., Nie, L., Yang, Y., Shen, H.T.: Graph convolutional network hashing (2018)

  40. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2), 450–461 (2016)

    Article  Google Scholar 

  41. Zhu, X., He, W., Li, Y., Yang, Y., Zhang, S., Hu, R., Xhu, Y.: One-step spectral clustering via dynamically learning affinity matrix and subspace, pp. 2963–2969 (2017)

  42. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6), 1263–1275 (2017)

    Article  MathSciNet  Google Scholar 

  43. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans Multimed 19(9), 2033–2044 (2017)

    Article  Google Scholar 

  44. Zhu, X., Shichao, Z., Li, Y., Jilian, Z., Lifeng, Y., Yue, F.: Low-rank sparse subspace for spectral clustering. IEEE Trans Knowl Data Eng 31(8), 1532–1543 (2019)

    Article  Google Scholar 

  45. Zhu, X., Zhang, S., Hu, R., He, W., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2018.2873378 (2018)

    Article  Google Scholar 

  46. Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2018.2858782

    Article  Google Scholar 

  47. Zhu, X., Zhu, Y., Zhang, S., Hu, R., He, W.: Adaptive hypergraph learning for unsupervised feature selection, 3581–3587, pp. (2018)

  48. Zhu, Y., Zhu, X., Zheng, W.: Robust multi-view learning via half-quadratic minimization, pp. 3278–3284 (2018)

Download references

Acknowledgments

This work is partially supported by the China Key Research Program (Grant No: 2016YFB1000905), the Natural Science Foundation of China (Grants No: 61836016, 61876046, 61573270, and 61672177), the Project of Guangxi Science and Technology (GuiKeAD17195062), the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing, the Guangxi High Institutions Program of Introducing 100 High-Level Overseas Talents, the Strategic Research Excellence Fund at Massey University, the Marsden Fund of New Zealand (Grant No: MAU1721), and the Research Fund of Guangxi Key Lab of Multisource Information Mining and Security (18-A-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Computational Social Science as the Ultimate Web Intelligence

Guest Editors: Xiaohui Tao, Juan D. Velasquez, Jiming Liu, and Ning Zhong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Gan, J., Lu, G. et al. Spectral clustering via half-quadratic optimization. World Wide Web 23, 1969–1988 (2020). https://doi.org/10.1007/s11280-019-00731-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00731-8

Keywords

Navigation