Trajectories know where map is wrong: an iterative framework for map-trajectory co-optimisation

Abstract

The low map quality has been a persistent problem which is usually caused by the belated map update. Although the recent research on map inference/update enables timely map update through the use of trajectory data, the update quality is still far from being practically useful due to the trajectory inaccuracy. In this work, we propose an iterative map-trajectory co-optimisation framework which refines the traditional map inference/update results by considering their contribution to the quality improvement on both map and trajectory map-matching results. In each iteration, we propose two respective scores to measure the credibility and influence of each road update and refine the map and map-matching result accordingly. Meanwhile, we quantify the quality of map and trajectory-matching results so that the goal of our iterative co-optimisation is to maximise the overall quality result. Additionally, to accelerate the iterative process, we introduce an R-tree-based spatial index to avoid unnecessary map-matching. Overall, our framework supports most of the existing map inference/update methods and significantly improves the quality of their update result with affordable overhead. We conduct extensive experiments on real-world datasets of different scales. The results show the significant quality improvement over the state-of-the-art map update methods while the efficiency stays competitive.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica 19(3), 601–632 (2015)

    Article  Google Scholar 

  2. 2.

    Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: Map construction algorithms. In: Map Construction Algorithms, pp. 1–14. Springer (2015)

  3. 3.

    Ahmed, M., Wenk, C.: Constructing street networks from Gps trajectories. In: European Symposium on Algorithms, pp. 60–71. Springer (2012)

  4. 4.

    Biagioni, J., Eriksson, J.: Inferring road maps from global positioning system traces: Survey and comparative evaluation. Transportation Research Record:, Journal of the Transportation Research Board (2291), 61–71 (2012)

    Article  Google Scholar 

  5. 5.

    Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 79–88. ACM (2012)

  6. 6.

    Cao, L., Krumm, J.: From gps traces to a routable road map. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 3–12. ACM (2009)

  7. 7.

    Chao, P., Hua, W., Zhou, X.: An iterative map-trajectory co-optimisation framework based on map-matching and map update. In: International Conference on Database Systems for Advanced Applications. Springer (2019)

  8. 8.

    Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map generation. IEEE Pervasive Comput. 5(4), 47–54 (2006)

    Article  Google Scholar 

  9. 9.

    Ding, Z., Yang, B., Chi, Y., Guo, L.: Enabling smart transportation systems: a parallel spatio-temporal database approach. IEEE Trans. Comput. 65(5), 1377–1391 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Edelkamp, S., Schrödl, S.: Route planning and map inference with global positioning traces. In: Computer Science in Perspective, pp. 128–151. Springer (2003)

  11. 11.

    Ezzat, M., Sakr, M., Elgohary, R., Khalifa, M.E.: Building road segments and detecting turns from gps tracks. Journal of computational science 29, 81–93 (2018)

    Article  Google Scholar 

  12. 12.

    Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algorithms: Current issues and future directions. Comput. Environ. Urban. Syst. 48, 153–165 (2014)

    Article  Google Scholar 

  13. 13.

    Hopper, D.: 7 times google maps straight up ruined people’s lives. http://www.cracked.com/article_25510_7-times-google-maps-straight-up-ruined-peoples-lives.html (2018)

  14. 14.

    Hu, G., Shao, J., Liu, F., Wang, Y., Shen, H.T.: If-matching: Towards accurate map-matching with information fusion. IEEE Trans. Knowl. Data Eng. 29(1), 114–127 (2017)

    Article  Google Scholar 

  15. 15.

    Jeung, H., Lu, H., Sathe, S., Yiu, M.L.: Managing evolving uncertainty in trajectory databases. IEEE Trans. Knowl. Data Eng. 26(7), 1692–1705 (2013)

    Article  Google Scholar 

  16. 16.

    Karagiorgou, S., Pfoser, D.: On vehicle tracking data-based road network generation. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 89–98. ACM (2012)

  17. 17.

    Karagiorgou, S., Pfoser, D., Skoutas, D.: A layered approach for more robust generation of road network maps from vehicle tracking data. ACM Transactions on Spatial Algorithms and Systems (TSAS) 3(1), 3 (2017)

    Google Scholar 

  18. 18.

    Kubička, M., Cela, A., Moulin, P., Mounier, H., Niculescu, S.I.: Dataset for testing and training of map-matching algorithms. In: Intelligent Vehicles Symposium (IV), 2015 IEEE, pp. 1088–1093. IEEE (2015)

  19. 19.

    Kubicka, M., Cela, A., Mounier, H., Niculescu, S.I.: Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intell. Transp. Syst. Mag. 10(2), 150–166 (2018)

    Article  Google Scholar 

  20. 20.

    Leutenegger, S.T., Lopez, M.A., Edgington, J.: Str: a simple and efficient algorithm for R-Tree packing. In: Proceedings. 13Th International Conference on Data Engineering, 1997, pp. 497–506. IEEE (1997)

  21. 21.

    Li, H., Kulik, L., Ramamohanarao, K.: Automatic generation and validation of road maps from gps trajectory data sets. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1523–1532. ACM (2016)

  22. 22.

    Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale, sparse gps traces for map inference: comparison of approaches. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 669–677. ACM (2012)

  23. 23.

    Ma, C., Lu, H., Shou, L., Chen, G.: Ksq: Top-k similarity query on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2012)

    Google Scholar 

  24. 24.

    Mohamed, R., Aly, H., Youssef, M.: Accurate and efficient map matching for challenging environments. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 401–404. ACM (2014)

  25. 25.

    Newson, P., Krumm, J.: Hidden markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343. ACM (2009)

  26. 26.

    Peixoto, D.A., Hung, N.Q.V.: Scalable and fast Top-K most similar trajectories search using mapreduce In-Memory. In: Australasian Database Conference, pp. 228–241. Springer (2016)

  27. 27.

    Qiu, J., Wang, R.: Inferring road maps from sparsely sampled gps traces. Journal of Location Based Services 10(2), 111–124 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part c:, Emerging Technologies 15(5), 312–328 (2007)

    Article  Google Scholar 

  29. 29.

    Shan, Z., Wu, H., Sun, W., Zheng, B.: Cobweb: a robust map update system using gps trajectories. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 927–937. ACM (2015)

  30. 30.

    Stanojevic, R., Abbar, S., Thirumuruganathan, S., Morales, G.D.F., Chawla, S., Filali, F., Aleimat, A.: Road network fusion for incremental map updates. In: LBS 2018: 14Th International Conference on Location Based Services, pp. 91–109. Springer (2018)

  31. 31.

    Wang, T., Mao, J., Jin, C.: Hymu: a hybrid map updating framework. In: International Conference on Database Systems for Advanced Applications, pp. 19–33. Springer (2017)

  32. 32.

    Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., Zhu, Y.: Crowdatlas: self-updating maps for cloud and personal use. In: Proceeding of the 11Th Annual International Conference on Mobile Systems, Applications, and Services, pp. 27–40. ACM (2013)

  33. 33.

    Wei, H., Wang, Y., Forman, G., Zhu, Y.: Map matching: Comparison of approaches using sparse and noisy data. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 444–447. ACM (2013)

  34. 34.

    Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast viterbi map matching with tunable weight functions. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 613–616. ACM (2012)

  35. 35.

    Wu, H., Tu, C., Sun, W., Zheng, B., Su, H., Wang, W.: Glue: a parameter-tuning-free map updating system. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 683–692. ACM (2015)

  36. 36.

    Yang, B., Fantini, N., Jensen, C.S.: ipark: Identifying parking spaces from trajectories. In: Proceedings of the 16th International Conference on Extending Database Technology, pp. 705–708. ACM (2013)

  37. 37.

    Yang, B., Ma, Q., Qian, W., Zhou, A.: Truster: trajectory data processing on clusters. In: International Conference on Database Systems for Advanced Applications, pp. 768–771. Springer (2009)

  38. 38.

    Yang, C., Gidofalvi, G.: Fast map matching, an algorithm integrating hidden markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018)

    Article  Google Scholar 

  39. 39.

    Zhu, Y., Wang, Y., Forman, G., Wei, H.: Mining large-scale gps streams for connectivity refinement of road maps. Comput. J. 58(9), 2109–2119 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pingfu Chao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chao, P., Hua, W. & Zhou, X. Trajectories know where map is wrong: an iterative framework for map-trajectory co-optimisation. World Wide Web 23, 47–73 (2020). https://doi.org/10.1007/s11280-019-00721-w

Download citation

Keywords

  • Map update
  • Map-matching
  • Map-trajectory co-optimisation