Preserving location privacy using three layer RDV masking in geocoded published discrete point data

Abstract

The prevalent usage of Location Based Services; where getting any informational service is solely based on the user’s current location, have raised an extreme concern over location privacy of the user. The privacy concern becomes paramount when the location tagged data publication like government health care data, district crime record data and the like, are reverse engineered by an adversary to pinpoint the real user against the location given in the specific tuple of the record. Address information is typically considered as a confidential element of the published record and any linkages of this piece of information with publicly available quasi identifier is enough to reveal a lot about a user (which is not apparent otherwise) or hamper the social reputation of the user considering the extreme case. Various geographical masking techniques have been presented and discussed at length in the literature, however, no scheme is able to dispense privacy providing absolute usefulness of the published data. This work is a research attempt to recognize the current state-of-the-art in geographical masking, supportive analysis of the existing masking technique, and come up with a robust solution that serves the purpose of location privacy without making published data worthless. The suggested solution is well suited for geocoded, static, discrete point published data.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

References

  1. 1.

    AbdelMalik, P., Boulos, M.N.K., Jones, R.: The perceived impact of location privacy: A Web-based survey of public health perspectives and requirements in the uk and canada. BMC Publ. Health 8, 156 (2008)

    Article  Google Scholar 

  2. 2.

    Armstrong, M.P., Rushton, G., Zimmerman, D.L., et al.: Geographically masking health data to preserve confidentiality. Stati. Med. 18, 497–525 (1999)

    Article  Google Scholar 

  3. 3.

    Aurenhammer, F., Klein, R.: Voronoi diagrams. Handbook Comput. Geom. 5, 201–290 (2000)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cassa, C.A., Grannis, S.J., Overhage, J.M., Mandl, K.D.: A context-sensitive approach to anonymizing spatial surveillance data. J. Am. Med. Inform. Assoc. 13, 160–165 (2006)

    Article  Google Scholar 

  5. 5.

    Cignoni, P., Montani, C., Scopigno, R.: Dewall: A fast divide and conquer delaunay triangulation algorithm in ed. Comput.-Aided Des. 30, 333–341 (1998)

    Article  Google Scholar 

  6. 6.

    Cox, L.: Matrix masking methods for disclosure limitation in microdata. Survey Methodol. 20, 165–169 (1994)

    Google Scholar 

  7. 7.

    Curtis, A., Mills, J.W., Agustin, L., Cockburn, M.: Confidentiality risks in fine scale aggregations of health data. Comput. Environ. Urban. Syst. 35, 57–64 (2011)

    Article  Google Scholar 

  8. 8.

    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Delaunay triangulations: Height interpolation. Comput. Geom. Algor. Appl. 9, 191–218 (2008)

    Article  Google Scholar 

  9. 9.

    Du, Q., Emelianenko, M., Ju, L.: Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119 (2006)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Duckham, M., Kulik, L.: Location privacy and location-aware computing. Dynamic & Mobile GIS: Investigating Change in Space and Time 3, 35–51 (2006)

    Google Scholar 

  11. 11.

    Duncan, G.T., Pearson, R.W., et al.: Enhancing access to microdata while protecting confidentiality: Prospects for the future. Stat. Sci. 6, 219–232 (1991)

    Article  Google Scholar 

  12. 12.

    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Elfick, M.: Contouring by use of a triangular mesh. Cartogr. J. 16, 24–29 (1979)

    Article  Google Scholar 

  14. 14.

    Elwood, S., Leszczynski, A.: Privacy, reconsidered: New representations, data practices, and the geoWeb. Geoforum 42, 6–15 (2011)

    Article  Google Scholar 

  15. 15.

    Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp 313–322. ACM (1986)

  16. 16.

    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay and voronoi diagrams. Algorithmica 7, 381–413 (1992)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gupta, R., Rao, U.P.: Achieving location privacy through CAST in location based services. J. Commun. Netw. 19(3), 227–238 (2017)

    Article  Google Scholar 

  18. 18.

    Gupta, R., Rao, U.P.: An exploration to location based service and its privacy preserving techniques: A survey. Wireles Personal Commun. 96(2), 1973–2007 (2017)

    Article  Google Scholar 

  19. 19.

    Gupta, R., Rao, U.P.: A hybrid location privacy solution for mobile lbs. Mob. Inf. Syst., 2017 (2017)

    Article  Google Scholar 

  20. 20.

    Gupta, R., Rao, U.P.: VIC-PRO: Vicinity protection by concealing location coordinates using geometrical transformations in location based services. Wireles Personal Commun. 107(2), 1041–1059 (2019)

    Article  Google Scholar 

  21. 21.

    Hampton, K.H., Fitch, M.K., Allshouse, W.B., Doherty, I.A., Gesink, D.C., Leone, P.A., Serre, M.L., Miller, W.C.: Mapping health data: Improved privacy protection with donut method geomasking. Am. J. Epidemiol. 172(9), 1062–1069 (2010)

    Article  Google Scholar 

  22. 22.

    Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media (2007)

  23. 23.

    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discret. Comput. Geom. 22, 333–346 (1999)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kounadi, O., Leitner, M.: Spatial information divergence: Using global and local indices to compare geographical masks applied to crime data. Trans. GIS 19, 737–757 (2015)

    Article  Google Scholar 

  25. 25.

    Kwan, M.-P., Casas, I., Schmitz, B.: Protection of geoprivacy and accuracy of spatial information: How effective are geographical masks? Cartographica: The International Journal for Geographic Information and Geovisualization 39, 15–28 (2004)

    Article  Google Scholar 

  26. 26.

    Leach, G.: Improving worst-case optimal delaunay triangulation algorithms. In: 4th Canadian Conference on Computational Geometry, pp 340–346. Citeseer (1992)

  27. 27.

    Leitner, M.: A first step towards a framework for presenting the location of confidential point data on maps results of an empirical perceptual study. Int. J. Geogr. Inf. Sci. 20, 813–822 (2006)

    Article  Google Scholar 

  28. 28.

    Leitner, M., Curtis, A.: Cartographic guidelines for geographically masking the locations of confidential point data. Cartograph. Perspect. 6, 22–39 (2004)

    Article  Google Scholar 

  29. 29.

    Li, M, Sun, X, Wang, H, Zhang, Y, Zhang, J.: Privacy-aware access control with trust management in Web service. World Wide Web 14(4), 407–430 (2011)

    Article  Google Scholar 

  30. 30.

    Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28, 84–95 (1980)

    Article  Google Scholar 

  31. 31.

    o’Rourke, J., Mallinckrodt, A.J., et al.: Computational geometry in c. Comput. Phys. 9, 55–55 (1995)

    Article  Google Scholar 

  32. 32.

    Rebay, S.: Efficient unstructured mesh generation by means of delaunay triangulation and bowyer-watson algorithm. J. Comput. Phys. 106, 125–138 (1993)

    Article  Google Scholar 

  33. 33.

    Shu, J, Jia, X, Yang, K, Wang, H: Privacy-preserving task recommendation services for crowdsourcing. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2018.2791601 (2018)

  34. 34.

    Sinclair, D.: S-hull: A fast radial sweep-hull routine for delaunay triangulation. arXiv:1604.01428 (2016)

  35. 35.

    Su, P., Drysdale, R.L.S.: A comparison of sequential delaunay triangulation algorithms. Comput. Geom. 7, 361–385 (1997)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Tsai, J.D.V.: Fast topological construction of Delaunay triangulations and Voronoi diagrams. J. Comput. Geosci. 19, 1463–1474 (1993)

    Article  Google Scholar 

  37. 37.

    Vorono”ı, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. J. für die reine und angewandte Mathematik 134, 198–287 (1908)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Wang, H, Zhang, Z, Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)

    Article  Google Scholar 

  39. 39.

    Weiser, P., Scheider, S.: A civilized cyberspace for geoprivacy. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Privacy in Geographic Information Collection and Analysis, p. 5. ACM (2014)

  40. 40.

    Zandbergen, P.A.: Ensuring confidentiality of geocoded health data: assessing geographic masking strategies for individual-level data. Advances in Medicine, 2014 (2014)

    Article  Google Scholar 

  41. 41.

    Zhang, J, Tao, X, Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4), 539–568 (2014)

    Article  Google Scholar 

  42. 42.

    Zhang, J, Li, H, Liu, X, Luo, Y, Chen, F, Wang, H, Chang, L.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Depend. Sec. Comput. 14(5), 507–520 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruchika Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Rao, U.P. Preserving location privacy using three layer RDV masking in geocoded published discrete point data. World Wide Web 23, 175–206 (2020). https://doi.org/10.1007/s11280-019-00716-7

Download citation

Keywords

  • Geocoded published data
  • Location privacy
  • Geomasking
  • User privacy