World Wide Web

, Volume 22, Issue 2, pp 571–601 | Cite as

Deep learning approaches for video-based anomalous activity detection

  • Karishma PawarEmail author
  • Vahida Attar
Part of the following topical collections:
  1. Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications


The pervasive use of cameras at indoor and outdoor premises on account of recording the activities has resulted into deluge of long video data. Such surveillance videos are characterized by single or multiple entities (persons, objects) performing sequential/concurrent activities. It is often interesting to detect suspicious behavior of such entities in an automated manner without any intervention of human personnel, and to this end, anomalous activity detection from surveillance videos is an important research domain in Computer Vision. Detecting the anomalous activities from videos is very challenging due to equivocal nature of anomalies, context at which events took place, lack of ample size of anomalous ground truth training data and also other factors associated with variation in environment conditions, illumination conditions and working status of capturing cameras. Though automated visual surveillance is one of the highly sought-after research domains, use of deep learning techniques for anomalous activity detection is still in nascent stage. Deep learning models like convolution neural networks, auto-encoders, Long Short Term Memory network models have achieved remarkable performance on different domains like image classification, object detection, speech processing, and expediting towards achieving excellence in anomaly detection tasks. This paper aims at studying and analyzing deep learning techniques for video-based anomalous activity detection. As outcome of the study, the graphical taxonomy has been put forth based on kinds of anomalies, level of anomaly detection, and anomaly measurement for anomalous activity detection. The focus has been given on various anomaly detection frameworks having deep learning techniques as their core methodology. Deep learning approaches from both the perspectives of accuracy oriented anomaly detection and real-time processing oriented anomaly detection are compared. This paper also sheds light upon research issues and challenges, application domains, benchmarked datasets and future directions in the domain of deep learning based anomaly detection.


anomalous activity detection anomaly modeling computer vision deep learning real time detection video surveillance 



Authors would like to thank anonymous reviewers for their valuable comments and guidance. This work has been supported by the Center of Excellence for Signal and Image Processing (CoE - SIP), College of Engineering Pune, India.


  1. 1.
  2. 2.
    Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 555–560 (2008)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Arashloo, S.R., Kittler, J., Christmas, W.: An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol. IEEE Access. 5, 13868–13882 (2017)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Bertini, M., Del Bimbo, A., Seidenari, L.: Multi-scale and real-time non-parametric approach for anomaly detection and localization. Comput. Vis. Image Underst. 116, 320–329 (2012)CrossRefGoogle Scholar
  7. 7.
    Biswas, S. & Babu, R. V.: Real time anomaly detection in H. 264 compressed videos. in Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2013 Fourth National Conference on 1–4 (2013)Google Scholar
  8. 8.
    Candamo, J., Shreve, M., Goldgof, D.B., Sapper, D.B., Kasturi, R.: Understanding transit scenes: A survey on human behavior-recognition algorithms. IEEE Trans. Intell. Transp. Syst. 11, 206–224 (2010)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15 (2009)CrossRefGoogle Scholar
  11. 11.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, {BMVC} 2014, Nottingham, UK, September 1–5, 2014 (2014)Google Scholar
  12. 12.
    Cheng, K.-W., Chen, Y.-T., Fang, W.-H.: Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation. IEEE Trans. Image Process. 24, 5288–5301 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cheng, K.-W., Chen, Y.-T., Fang, W.-H.: An efficient subsequence search for video anomaly detection and localization. Multimed. Tools Appl. 75, 15101–15122 (2016)CrossRefGoogle Scholar
  14. 14.
    Chong, Y. S. & Tay, Y. H.: Modeling video-based anomaly detection using deep architectures: Challenges and possibilities. in Control Conference (ASCC), 2015 10th Asian 1–8 (2015)Google Scholar
  15. 15.
    Cong, Y., Yuan, J. & Liu, J.: Sparse reconstruction cost for abnormal event detection. in CVPR 2011 3449–3456 (2011).
  16. 16.
    Cong, Y., Yuan, J., Liu, J.: Abnormal event detection in crowded scenes using sparse representation. Pattern Recognit. 46, 1851–1864 (2013)CrossRefGoogle Scholar
  17. 17.
    Creusot, C. & Munawar, A.: Real-time small obstacle detection on highways using compressive RBM road reconstruction. in Intelligent Vehicles Symposium (IV), 2015 IEEE 162–167 (2015)Google Scholar
  18. 18.
  19. 19.
  20. 20.
    de Leo, C., Manjunath, B.S.: Multicamera video summarization and anomaly detection from activity motifs. ACM Trans. Sen. Netw. 10(27), 1–27:30 (2014)CrossRefGoogle Scholar
  21. 21.
    Del Giorno, A., Bagnell, J. A. & Hebert, M. A Discriminative Framework for Anomaly Detection in Large Videos. in Computer Vision -- ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part V (eds. Leibe, B., Matas, J., Sebe, N. & Welling, M.) 334–349 (Springer International Publishing, 2016).
  22. 22.
    Distante, A., Marino, F., Mazzeo, P. L.: Nitti, M. & Stella, E. Automatic Method and System for Visual Inspection of Railway Infrastructure. (2009)Google Scholar
  23. 23.
    Fan, Y., Levine, M.D., Wen, G., Qiu, S.: A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing. 260, 43–58 (2017)CrossRefGoogle Scholar
  24. 24.
    Fang, Z., et al.: Abnormal event detection in crowded scenes based on deep learning. Multimed. Tools Appl. 75, 14617–14639 (2016)CrossRefGoogle Scholar
  25. 25.
    Feng, Y., Yuan, Y. & Lu, X.: Deep representation for abnormal event detection in crowded scenes. in Proceedings of the 2016 ACM on Multimedia Conference 591–595 (ACM, 2016).Google Scholar
  26. 26.
    Feng, Y., Yuan, Y., Lu, X.: Learning deep event models for crowd anomaly detection. Neurocomputing. 219, 548–556 (2017)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., Hauptmann, A.: G. DevNet: A Deep Event Network for multimedia event detection and evidence recounting. in 2015 I.E. Conference on Computer Vision and Pattern Recognition (CVPR). 2568–2577 (2015).
  29. 29.
    Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based LSTM and semantic consistency. IEEE Trans. Multimed. 19, 2045–2055 (2017)CrossRefGoogle Scholar
  30. 30.
    Girshick, R: Fast r-cnn. IEEE international conference on computer vision, 1440–1448 (2015)Google Scholar
  31. 31.
    Goodfellow, I. et al. Generative Adversarial Nets. in Advances in Neural Information Processing Systems 27 (eds. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 2672–2680 (Curran Associates, Inc., 2014)Google Scholar
  32. 32.
    Guo, Y., Zhang, J., Gao, L.: Exploiting long-term temporal dynamics for video captioning. World Wide Web. (2018)Google Scholar
  33. 33.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22, 809–830 (2000)CrossRefGoogle Scholar
  34. 34.
    Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K. & Davis, L. S.: Learning temporal regularity in video sequences. in Computer Vision and Pattern Recognition (CVPR), 2016 I.E. Conference on 733–742 (2016)Google Scholar
  35. 35.
    He, C., Shao, J., Sun, J.: An anomaly-introduced learning method for abnormal event detection. Multimed. Tools Appl. (2017).
  36. 36.
    Hendel, A., Weinshall, D., Peleg, S.: Identifying Surprising Events in Videos Using Bayesian Topic Models. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) Computer Vision -- ACCV 2010: 10th Asian Conference on Computer Vision, Queenstown, New Zealand, November 8–12, 2010, Revised Selected Papers, Part III, pp. 448–459. Springer, Berlin Heidelberg (2011). CrossRefGoogle Scholar
  37. 37.
    Hinami, R., Mei, T., Satoh, S.: Joint detection and recounting of abnormal events by learning deep generic knowledge. The IEEE International Conference on Computer Vision (ICCV). 2017, (2017)Google Scholar
  38. 38.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRefGoogle Scholar
  39. 39.
    Hou, J., Wu, X., Yu, F. & Jia, Y.: Multimedia event detection via deep spatial-temporal neural networks. in 2016 I.E. International Conference on Multimedia and Expo (ICME) 1–6 (2016).
  40. 40.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man, Cybern. Part C Applications Rev. 34, 334–352 (2004)CrossRefGoogle Scholar
  41. 41.
    Hu, X., Hu, S., Huang, Y., Zhang, H., Wu, H.: Video anomaly detection using deep incremental slow feature analysis network. IET Comput. Vis. 10, 258–267 (2016)CrossRefGoogle Scholar
  42. 42.
    i-Lids bag and vehicle detection challenge:
  43. 43.
    Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A.: Image-to-image translation with conditional adversarial networks. arXiv Prepr. (2017)Google Scholar
  44. 44.
    Junior, J.C.S.J., Musse, S.R., Jung, C.R.: Crowd Analysis Using Computer Vision Techniques. IEEE Signal Process. Mag. 27, 66–77 (2010)Google Scholar
  45. 45.
    Kaltsa, V., Briassouli, A., Kompatsiaris, I., Hadjileontiadis, L.J., Strintzis, M.G.: Swarm intelligence for detecting interesting events in crowded environments. IEEE Trans. image Process. 24, 2153–2166 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kok, V.J., Lim, M.K., Chan, C.S.: Crowd behavior analysis: A review where physics meets biology. Neurocomputing. 177, 342–362 (2016)CrossRefGoogle Scholar
  47. 47.
    Krizhevsky, A., Sutskever, I. & Hinton, G. E.: Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems 1097–1105 (2012)Google Scholar
  48. 48.
    Leach, M.J.V., Sparks, E.P., Robertson, N.M.: Contextual anomaly detection in crowded surveillance scenes. Pattern Recogn. Lett. 44, 71–79 (2014)CrossRefGoogle Scholar
  49. 49.
    Leyva, R., Sanchez, V., Li, C.-T.: Video anomaly detection with compact feature sets for online performance. IEEE Trans. Image Process. 26, 3463–3478 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Leyva, R., Sanchez, V., Li, C.-T.: The LV dataset: a realistic surveillance video dataset for abnormal event detection. In: Biometrics and Forensics (IWBF), 2017 5th International Workshop on 1–6 (2017)Google Scholar
  51. 51.
    Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intell. 36, 18–32 (2014)CrossRefGoogle Scholar
  52. 52.
    Li, T., et al.: Crowded scene analysis: A survey. IEEE Trans. Circuits Syst. Video Technol. 25, 367–386 (2015)CrossRefGoogle Scholar
  53. 53.
    Li, N., Wu, X., Xu, D., Guo, H., Feng, W.: Spatio-temporal context analysis within video volumes for anomalous-event detection and localization. Neurocomputing. 155, 309–319 (2015)CrossRefGoogle Scholar
  54. 54.
    Li, X., Zhou, Z., Chen, L., Gao, L.: Residual attention-based LSTM for video captioning. World Wide Web. (2018).
  55. 55.
    Lu, C., Shi, J. & Jia, J.: Abnormal event detection at 150 fps in matlab. in Computer Vision (ICCV), 2013 I.E. International Conference on 2720–2727 (2013)Google Scholar
  56. 56.
    Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. in The IEEE International Conference on Computer Vision (ICCV). (2017)Google Scholar
  57. 57.
    Mahadevan, V., Li, W., Bhalodia, V. & Vasconcelos, N.: Anomaly detection in crowded scenes. in Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on 1975–1981 (2010)Google Scholar
  58. 58.
    Makhzani, A., Frey, B.J.: A winner-take-all method for training sparse convolutional autoencoders. Adv. Neural Inf. Proces. Syst. 2791–2799 (2015)Google Scholar
  59. 59.
    Marsden, M., McGuinness, K., Little, S. & O’Connor, N. E.: Holistic features for real-time crowd behaviour anomaly detection. in Image Processing (ICIP), 2016 I.E. International Conference on 918–922 (2016)Google Scholar
  60. 60.
    Medel, J. R. & Savakis, A. E.: Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR abs/1612.0, (2016)Google Scholar
  61. 61.
    Menotti, D., et al.: Deep representations for Iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10, 864–879 (2015)CrossRefGoogle Scholar
  62. 62.
  63. 63.
    Mo, X., Monga, V., Bala, R., Fan, Z.: Adaptive sparse representations for video anomaly detection. IEEE Trans. Circuits Syst. Video Technol. 24, 631–645 (2014)CrossRefGoogle Scholar
  64. 64.
    Munawar, A., Vinayavekhin, P. & De Magistris, G.: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space. in Applications of Computer Vision (WACV), 2017 I.E. Winter Conference on 1017–1025 (2017)Google Scholar
  65. 65.
    Nakahata, M.T., Thomaz, L.A., da Silva, A.F., da Silva, E.A.B., Netto, S.L.: Anomaly detection with a moving camera using spatio-temporal codebooks. Multidimens. Syst. Signal Process. 29, 1025–1054 (2018)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Narasimhan, M. G. & Sowmya Kamath S.: Dynamic video anomaly detection and localization using sparse denoising autoencoders. Multimed. Tools Appl. (2017).
  67. 67.
    Ogawa, T., Hiraoka, D., Ito, S., Ito, M. & Fukumi, M.: Improvement in detection of abandoned object by pan-tilt camera. in Knowledge and Smart Technology (KST), 2016 8th International Conference on 152–157 (2016)Google Scholar
  68. 68.
    Olson, C. C. & Doster, T.: A Novel Detection Paradigm and Its Comparison to Statistical and Kernel-Based Anomaly Detection Algorithms for Hyperspectral Imagery. in 2017 I.E. Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 302–308 (2017).
  69. 69.
    Pathak, A. R., Pandey, M., Rautaray, S. & Pawar, K.: Assessment of object detection using deep convolutional neural networks. in Intelligent Computing and Information and Communication (eds. Bhalla, S., Bhateja, V., Chandavale, A. A., Hiwale, A. S. & Satapathy, S. C.) 457–466 (Springer Singapore, 2018)Google Scholar
  70. 70.
    Pathak, A. R., Pandey, M. & Rautaray, S.: Deep learning approaches for detecting objects from images: a review. in Progress in Computing, Analytics and Networking (eds. Pattnaik, P. K., Rautaray, S. S., Das, H. & Nayak, J.) 491–499 (Springer Singapore, 2018)Google Scholar
  71. 71.
  72. 72.
    Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition—A review. IEEE Trans. Syst. Man, Cybern. Part C Applications Rev. 42, 865–878 (2012)CrossRefGoogle Scholar
  73. 73.
  74. 74.
    Ravanbakhsh, M., Nabi, M., Mousavi, H., Sangineto, E. & Sebe, N.: Plug-and-Play CNN for Crowd Motion Analysis: An Application in Abnormal Event Detection. CoRR abs/1610.0, (2016)Google Scholar
  75. 75.
    Ravanbakhsh, M., Sangineto, E., Nabi, M. & Sebe, N.: training adversarial discriminators for cross-channel abnormal event detection in crowds. CoRR abs/1706.0, (2017)Google Scholar
  76. 76.
    Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition 779–788 (2016)Google Scholar
  77. 77.
    Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. 38, 1760–1770 (1990)CrossRefGoogle Scholar
  78. 78.
    Roshtkhari, M.J., Levine, M.D.: An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Comput. Vis. Image Underst. 117, 1436–1452 (2013)CrossRefGoogle Scholar
  79. 79.
    Sabokrou, M., Fathy, M., Hoseini, M. & Klette, R.: Real-time anomaly detection and localization in crowded scenes. in Proceedings of the IEEE conference on computer vision and pattern recognition workshops 56–62 (2015)Google Scholar
  80. 80.
    Sabokrou, M., Fathy, M., Hoseini, M.: Video anomaly detection and localisation based on the sparsity and reconstruction error of auto-encoder. Electron. Lett. 52, 1122–1124 (2016)CrossRefGoogle Scholar
  81. 81.
    Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. 26, 1992–2004 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Sabokrou, M., Fathy, M., Moayed, Z., Klette, R.: Fast and accurate detection and localization of abnormal behavior in crowded scenes. Mach. Vis. Appl. 28, 965–985 (2017)CrossRefGoogle Scholar
  83. 83.
    Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst. (2018).
  84. 84.
    Saligrama, V. & Chen, Z.: Video anomaly detection based on local statistical aggregates. in Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on 2112–2119 (2012)Google Scholar
  85. 85.
    Saligrama, V., Konrad, J., Jodoin, P.-M.: Video anomaly identification. IEEE Signal Process. Mag. 27, 18–33 (2010)CrossRefGoogle Scholar
  86. 86.
    Shah, M., Javed, O., Shafique, K.: Automated visual surveillance in realistic scenarios. IEEE Multimed. 14, 30–39 (2007)CrossRefGoogle Scholar
  87. 87.
    Shao, M., Fu, Y.: Deeply Self-Taught Multi-View Video Analytics Machine for Situation Awareness. in AFA Cyber Workshop. White Paper. (2015)Google Scholar
  88. 88.
    Simonyan, K. & Zisserman, A. : Two-stream convolutional networks for action recognition in videos. in Advances in neural information processing systems 568–576 (2014)Google Scholar
  89. 89.
    Sjarif, N.N.A., Shamsuddin, S.M., Hashim, S.Z.: Detection of abnormal behaviors in crowd scene: a review. Int. J. Adv. Soft Comput. Appl. 4, 1–33 (2012)Google Scholar
  90. 90.
    Sodemann, A.A., Ross, M.P., Borghetti, B.J.: A review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man, Cybern. Part C Applications Rev. 42, 1257–1272 (2012)CrossRefGoogle Scholar
  91. 91.
    Song, J., et al.: Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process. 27, 3210–3221 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Sun, L., Ai, H., Lao, S.: Localizing activity groups in videos. Comput. Vis. Image Underst. 144, 144–154 (2016)CrossRefGoogle Scholar
  93. 93.
    Sun, J., Shao, J., He, C.: Abnormal event detection for video surveillance using deep one-class learning. Multimed. Tools Appl. (2017).
  94. 94.
    Thida, M., Yong, Y.L., Climent-Pérez, P., Eng, H., Remagnino, P.: A Literature Review on Video Analytics of Crowded Scenes. In: Atrey, P.K., Kankanhalli, M.S., Cavallaro, A. (eds.) Intelligent Multimedia Surveillance: Current Trends and Research, pp. 17–36. Springer, Berlin Heidelberg (2013). CrossRefGoogle Scholar
  95. 95.
    Tian, Y., et al.: IBM smart surveillance system (S3): event based video surveillance system with an open and extensible framework. Mach. Vis. Appl. 19, 315–327 (2008)CrossRefGoogle Scholar
  96. 96.
    Tran, H. T. M. & Hogg, D. C.: Anomaly detection using a convolutional winner-take-all Autoencoder. in Proceedings of the British Machine Vision Conference 2017 (2017)Google Scholar
  97. 97.
    Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Computer Vision (ICCV), 2015 I.E. International Conference on 4489–4497 (2015)Google Scholar
  98. 98.
  99. 99.
    Tudor Ionescu, R., Smeureanu, S., Alexe, B., Popescu, M.: Unmasking the abnormal events in video. in The IEEE International Conference on Computer Vision (ICCV). (2017)Google Scholar
  100. 100.
  101. 101.
  102. 102.
  103. 103.
  104. 104.
    Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29, 983–1009 (2013)CrossRefGoogle Scholar
  105. 105.
    Wang, J., Xu, Z.: Spatio-temporal texture modelling for real-time crowd anomaly detection. Comput. Vis. Image Underst. 144, 177–187 (2016)CrossRefGoogle Scholar
  106. 106.
    Wang, B., Ye, M., Li, X., Zhao, F., Ding, J.: Abnormal crowd behavior detection using high-frequency and spatio-temporal features. Mach. Vis. Appl. 23, 501–511 (2012)CrossRefGoogle Scholar
  107. 107.
    Wang, Q., Wan, J. & Yuan, Y.: Deep metric learning for crowdedness regression. IEEE Trans. Circuits Syst. Video Technol. PP, 1 (2017)Google Scholar
  108. 108.
    Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3-D convNet fusion for action recognition in videos with arbitrary size and length. IEEE Trans. Multimed. 20, 634–644 (2018)CrossRefGoogle Scholar
  109. 109.
    Wang, X., et al.: Deep appearance and motion learning for egocentric activity recognition. Neurocomputing. 275, 438–447 (2018)CrossRefGoogle Scholar
  110. 110.
  111. 111.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)CrossRefGoogle Scholar
  112. 112.
    Wu, H., Shao, J., Xu, X., Shen, F. & Shen, H. T. A system for spatiotemporal anomaly localization in surveillance videos. in Proceedings of the 2017 ACM on Multimedia Conference 1225–1226 (ACM, 2017).
  113. 113.
    Xie, S., Guan, Y.: Motion instability based unsupervised online abnormal behaviors detection. Multimed. Tools Appl. 75, 7423–7444 (2016)CrossRefGoogle Scholar
  114. 114.
    Xu, D., Ricci, E., Yan, Y., Song, J. & Sebe, N. Learning Deep Representations of Appearance and Motion for Anomalous Event Detection. CoRR abs/1510.0, (2015)Google Scholar
  115. 115.
    Xu, D., Yan, Y., Ricci, E., Sebe, N.: Detecting anomalous events in videos by learning deep representations of appearance and motion. Comput. Vis. Image Underst. 156, 117–127 (2017)CrossRefGoogle Scholar
  116. 116.
    Yoffie, David B.: "Mobileye: The Future of Driverless Cars." Harvard Business School Case 715–421, October 2014. (Revised October 2015)Google Scholar
  117. 117.
    Yogameena, B., Nagananthini, C.: Computer vision based crowd disaster avoidance system: A survey. Int. J. Disaster Risk Reduct. 22, 95–129 (2017)CrossRefGoogle Scholar
  118. 118.
    Yu, R., Qiu, H., Wen, Z., Lin, C., Liu, Y.: A survey on social media anomaly detection. SIGKDD Explor. Newsl. 18, 1–14 (2016)CrossRefGoogle Scholar
  119. 119.
    Zeiler, M. D. & Fergus, R.: Visualizing and understanding convolutional networks. in European conference on computer vision 818–833 (2014)Google Scholar
  120. 120.
    Zhao, B., Fei-Fei, L. & Xing, E. P.: Online detection of unusual events in videos via dynamic sparse coding. in CVPR 2011 3313–3320 (2011).
  121. 121.
    Zhao, Y. et al. Spatio-temporal AutoEncoder for video anomaly detection. in Proceedings of the 2017 ACM on Multimedia Conference 1933–1941 (ACM, 2017).
  122. 122.
    Zhou, S., et al.: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes. Signal Process. Image Commun. 47, 358–368 (2016)CrossRefGoogle Scholar
  123. 123.
    Zhu, Y., Nayak, N.M., Roy-Chowdhury, A.K.: Context-aware activity recognition and anomaly detection in video. IEEE J. Sel. Top. Signal Process. 7, 91–101 (2013)CrossRefGoogle Scholar
  124. 124.
    Zitouni, M.S., Bhaskar, H., Dias, J., Al-Mualla, M.E.: Advances and trends in visual crowd analysis: A systematic survey and evaluation of crowd modelling techniques. Neurocomputing. 186, 139–159 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering & ITCollege of Engineering Pune (COEP)PuneIndia

Personalised recommendations