World Wide Web

, Volume 22, Issue 2, pp 455–475 | Cite as

Effective shortest travel-time path caching and estimating for location-based services

  • Detian Zhang
  • An Liu
  • Zhixu LiEmail author
  • Gangyong Jia
  • Fei Chen
  • Qing Li
Part of the following topical collections:
  1. Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications


For location-based services (LBS), the path with the shortest travel time is much more meaningful than the one with the shortest network distance, as it considers the live traffics in road networks. Usually, there are two ways for an LBS provider to provide the shortest travel-time paths for its queries, i.e., computing by itself or retrieving from external Web mapping services. However, both of these two ways are expensive, like costly computation and long latency. To accelerate shortest path query processing, we design an effective cache of shortest travel-time paths for LBS providers in this paper. Unlike the conventional path caching techniques, where the caches are only suitable for distance-based paths, our proposed cache is dynamic and can support travel-time-based paths. More importantly, a new cache operation, namely path join, is devised to estimate the path information for a query based on the cached paths, when the cache can not answer the query directly. Experimental results on a real Web mapping service and datasets confirm the effectiveness of the proposed techniques.


Shortest paths Caching Travel time Road networks 



This work was supported in part by the National Natural Science Foundation of China under Project 61702227, Project 61472337, Project 61572336, Project 61602214, Project 61602137, and Project 61632016, in part by the Natural Science Foundation of Jiangsu Province under Project BK20160191, in part by the Natural Science Research Project of Jiangsu Higher Education Institution (No. 17KJA520003). The last author (Qing Li) has also been supported by a contract project from the South China University of Technology.


  1. 1.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566–566 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bellman, R.: On a routing problem. Quart. Appl. Math. 16(1), 87–90 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, F., Zhang, D., Zhang, J., Wang, X., Chen, L., Liu, Y., Liu, J.: Distribution-aware cache replication for cooperative road side units in vanets. Peer-to-Peer Network. Appl., 1–10 (2017)Google Scholar
  4. 4.
    Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  5. 5.
    Delling, D., Goldberg, A. V., Nowatzyk, A., Werneck, R. F.: Phast: hardware-accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)CrossRefGoogle Scholar
  6. 6.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient k-nearest neighbor search in time-dependent spatial networks. In: DEXA (2010)Google Scholar
  7. 7.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C., Ranganathan, A.: Online computation of fastest path in time-dependent spatial networks. In: SSTD (2011)Google Scholar
  8. 8.
    Dijkstra, E. W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ding, B., Yu, J. X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT (2008)Google Scholar
  10. 10.
    Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H. T.: Video captioning with attention-based lstm and semantic consistency. IEEE Trans. Multimed. 19(9), 2045–2055 (2017)CrossRefGoogle Scholar
  11. 11.
    Gao, L., Song, J., Liu, X., Shao, J., Liu, J., Shao, J.: Learning in high-dimensional multimedia data: The state of the art. Multimed. Syst. 23(3), 303–313 (2017)CrossRefGoogle Scholar
  12. 12.
    George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms: A summary of results. In: SSTD (2007)Google Scholar
  13. 13.
    Hart, P. E., Nilsson, N. J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Kalavri, V., Simas, T., Logothetis, D.: The shortest path is not always a straight line: Leveraging semi-metricity in graph analysis. PVLDB 9(9), 672–683 (2016)Google Scholar
  16. 16.
    Levandoski, J. J., Mokbel, M. F., Khalefa, M. E.: Preference query evaluation over expensive attributes. In: CIKM, pp. 319–328 (2010)Google Scholar
  17. 17.
    Li, Y., Yiu, M. L.: Route-saver: Leveraging route apis for accurate and efficient query processing at location-based services. IEEE TKDE 27(1), 235–249 (2015)Google Scholar
  18. 18.
    Liu, X., Li, Z., Deng, C., Tao, D.: Distributed adaptive binary quantization for fast nearest neighbor search. IEEE Trans. Image Process. 26(11), 5324–5336 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: A system for large-scale graph processing. In: SIGMOD, pp. 135–146 (2010)Google Scholar
  20. 20.
    Meyer, U., Sanders, P.: Delta-stepping: A parallelizable shortest path algorithm. J. Algor. 49(1), 114–152 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
  22. 22.
    Podlipnig, S., Böszörmenyi, L.: A survey of Web cache replacement strategies. ACM Comput. Surv. 35(4), 374–398 (2003)CrossRefGoogle Scholar
  23. 23.
    Shi, L., Li, J., Jason Xue, C., Zhou, X.: Hybrid nonvolatile disk cache for energy-efficient and high-performance systems. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 18(1), 8 (2013)Google Scholar
  24. 24.
    Shi, L., Li, J., Li, Q., Xue, C. J., Yang, C., Zhou, X.: A unified write buffer cache management scheme for flash memory. IEEE Trans. Very Large Scale Integr.(VLSI) Syst. 22(12), 2779–2792 (2014)CrossRefGoogle Scholar
  25. 25.
    Smith, A. J.: Disk cache—miss ratio analysis and design considerations. ACM Trans. Comput. Syst. 3(3), 161–203 (1985)CrossRefGoogle Scholar
  26. 26.
    Song, J., Gao, L., Nie, F., Shen, H. T., Yan, Y., Sebe, N.: Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans. Image Process. 25(11), 4999–5011 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Song, J., Shen, H. T., Wang, J., Huang, Z., Sebe, N., Wang, J.: A distance-computation-free search scheme for binary code databases. IEEE Trans. Multimed. 18(3), 484–495 (2016)CrossRefGoogle Scholar
  28. 28.
    Song, J., Gao, L., Liu, L., Zhu, X., Sebe, N.: Quantization-based hashing: A general framework for scalable image and video retrieval. Pattern Recogn. 75, 175–187 (2018)CrossRefGoogle Scholar
  29. 29.
    Stenstrom, P.: A survey of cache coherence schemes for multiprocessors. Computer 23(6), 12–24 (1990)CrossRefGoogle Scholar
  30. 30.
    Thomsen, J. R., Yiu, M. L., Jensen, C. S.: Effective caching of shortest paths for location-based services. In: SIGMOD (2012)Google Scholar
  31. 31.
    U, L.H., Zhao, H.J., Yiu, M.L., Li, Y., Gong, Z.: Towards online shortest path computation. IEEE TKDE 26(4), 1012–1025 (2014)Google Scholar
  32. 32.
    Wang, X., Pang, X., Luo, Y.: Lbs-p: A lbs platform supporting online map services. In: 2010 IEEE 72nd on Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1–5. IEEE (2010)Google Scholar
  33. 33.
    Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Transactions on Multimedia (2017)Google Scholar
  34. 34.
    Zhang, D., Chow, C. Y., Li, Q., Liu, A.: Efficient evaluation of shortest travel-time path queries in road networks by optimizing waypoints in route requests through spatial mashups. In: APWeb (2016)Google Scholar
  35. 35.
    Zhang, D., Chow, C. Y., Li, Q., Zhang, X., Xu, Y.: Efficient evaluation of k-NN queries using spatial mashups. In: SSTD, pp. 348–366 (2011)Google Scholar
  36. 36.
    Zhang, D., Chow, C. Y., Li, Q., Zhang, X., Xu, Y.: SMashQ: Spatial mashup framework for k-NN queries in time-dependent road networks. Distrib. Parallel Databases 31(2), 259–287 (2013)CrossRefGoogle Scholar
  37. 37.
    Zhang, D., Chow, C. Y., Li, Q., Zhang, X., Xu, Y.: A spatial mashup service for efficient evaluation of concurrent k-NN queries. IEEE Trans. Comput. 65 (8), 2428–2442 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, Y., Hsueh, Y. L., Lee, W. C., Jhang, Y. H.: Efficient cache-supported path planning on roads. IEEE TKDE 28(4), 951–964 (2016)Google Scholar
  39. 39.
    Zhang, D., Liu, A., Jia, G., Chen, F., Li, Q., Li, J.: Effective caching of shortest travel-time paths for Web mapping mashup systems. In: WISE (2017)Google Scholar
  40. 40.
    Zhang, D., Liu, Y., Liu, A., Mao, X., Li, Q.: Efficient path query processing through cloud-based mapping services. IEEE Access 5, 12,963–12,973 (2017)CrossRefGoogle Scholar
  41. 41.
    Zhang, D., Chow, C. Y., Liu, A., Zhang, X., Ding, Q., Li, Q.: Efficient evaluation of shortest travel-time path queries through spatial mashups. GeoInformatica 22(1), 3–28 (2018)CrossRefGoogle Scholar
  42. 42.
    Zheng, Y., Zhang, L., Xie, X., Ma, W. Y.: Mining interesting locations and travel sequences from gps trajectories. In: WWW (2009)Google Scholar
  43. 43.
    Zhu, A. D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest path and distance queries on road networks: towards bridging theory and practice. In: SIGMOD (2013)Google Scholar
  44. 44.
    Zhu, C. J., Lam, K. Y., Cheng, R. C., Poon, C. K.: On using broadcast index for efficient execution of shortest path continuous queries. Inf. Syst. 49, 142–162 (2015)CrossRefGoogle Scholar
  45. 45.
    Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (6), 1263–1275 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Digital MediaJiangnan UniversityWuxiChina
  2. 2.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  3. 3.Department of Computer ScienceHangzhou Dianzi UniversityHangzhouChina
  4. 4.Department of Computer ScienceCity University of Hong KongKowloonHong Kong

Personalised recommendations