Dual influence embedded social recommendation

Abstract

Recommender systems are designed to solve the information overload problem and have been widely studied for many years. Conventional recommender systems tend to take ratings of users on products into account. With the development of Web 2.0, Rating Networks in many online communities (e.g. Netflix and Douban) allow users not only to co-comment or co-rate their interests (e.g. movies and books), but also to build explicit social networks. Recent recommendation models use various social data, such as observable links, but these explicit pieces of social information incorporating recommendations normally adopt similarity measures (e.g. cosine similarity) to evaluate the explicit relationships in the network - they do not consider the latent and implicit relationships in the network, such as social influence. A target user’s purchase behavior or interest, for instance, is not always determined by their directly connected relationships and may be significantly influenced by the high reputation of people they do not know in the network, or others who have expertise in specific domains (e.g. famous social communities). In this paper, based on the above observations, we first simulate the social influence diffusion in the network to find the global and local influence nodes and then embed this dual influence data into a traditional recommendation model to improve accuracy. Mathematically, we formulate the global and local influence data as new dual social influence regularization terms and embed them into a matrix factorization-based recommendation model. Experiments on real-world datasets demonstrate the effective performance of the proposed method.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Notes

  1. 1.

    we will further discuss these two definition in Section 4.

  2. 2.

    Defined in Section 4.1.1.

  3. 3.

    Defined in Section 4.1.2.

  4. 4.

    we will introduce our dataset in Section 6.

References

  1. 1.

    Adler, P.S.: Market, hierarchy, and trust: The knowledge economy and the future of capitalism. Organ. Sci. 12, 215–234 (2001)

    Article  Google Scholar 

  2. 2.

    Agarwal, V., Bharadwaj, K.: A collaborative filtering framework for friends recommendation in social networks based on interaction intensity and adaptive user similarity. Soc. Netw. Anal. Min. 3, 359–379 (2013)

    Article  Google Scholar 

  3. 3.

    Arndt, J.: Word of mouth advertising: a review of the literature advertising research foundation (1967)

  4. 4.

    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: Quantifying influence on twitter. In: Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), pp 65–74 (2011)

    Google Scholar 

  5. 5.

    Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation models. Knowl. Inf. Syst. 37, 555–584 (2013)

    Article  Google Scholar 

  6. 6.

    Barnett, E., Casper, M.: A definition of social environment. Am. J. Public Health (2001)

  7. 7.

    Barragáns-Martínez, A.B., Costa-Montenegro, E., Burguillo, J.C., Rey-López, M., Mikic-Fonte, F.A., Peleteiro, A.: A hybrid content-based and item-based collaborative filtering approach to recommend tv programs enhanced with singular value decomposition. Inform. Sci. 180, 4290–4311 (2010)

    Article  Google Scholar 

  8. 8.

    Bonhard, P., Sasse, M.A.: Knowing me, knowing you - using profiles and social networking to improve recommender systems. BT Technol. J. 24, 84–98 (2006)

    Article  Google Scholar 

  9. 9.

    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp 43–52. Morgan Kaufmann (1998)

  10. 10.

    Canny, J.: Collaborative filtering with privacy. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp 45–57 (2002)

    Google Scholar 

  11. 11.

    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 199–208 (2009)

    Google Scholar 

  12. 12.

    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 1029–1038 (2010)

    Google Scholar 

  13. 13.

    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp 88–97 (2010)

    Google Scholar 

  14. 14.

    Formoso, V., Fernández, D., Cacheda, F., Carneiro, V.: Distributed architecture for k-nearest neighbors recommender systems. In: Proceedings of the ACM International Conference on World Wide Web (WWW), vol. 18, pp 997–1017 (2015)

    Google Scholar 

  15. 15.

    Fouss, F., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of graph kernels on a collaborative recommendation task. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp 863–868 (2006)

    Google Scholar 

  16. 16.

    Gan, M.: Taffy: Incorporating tag information into a diffusion process for personalized recommendations. World Wide Web, 1–23 (2015)

  17. 17.

    Guo, J., Zhang, P., Zhou, C., Cao, Y., Guo, L.: Personalized influence maximization on social networks. In: Proceedings of the ACM International Conference on Information & Knowledge Management (CIKM), pp 199–208 (2013)

    Google Scholar 

  18. 18.

    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: Proceedings of the ACM International Conference on Recommender systems (RECSYS), pp 53–60 (2009)

    Google Scholar 

  19. 19.

    Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 230–237 (1999)

    Google Scholar 

  20. 20.

    Hu, G.N., Dai, X.Y., Song, Y., Huang, S.J., Chen, J.J.: A Synthetic Approach for Recommendation: Combining Ratings, Social Relations, and Reviews. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI) (2015)

    Google Scholar 

  21. 21.

    Jamali, M., Ester, M.. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the ACM International conference on Recommender Systems (RECSYS), pp 135–142. ACM (2010)

  22. 22.

    Kemp, D., Kleinber, J., Tardos, E.: Maximizing the spread of influence in a social network. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp 137–146 (2003)

    Google Scholar 

  23. 23.

    Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), pp 1127–1138 (2005)

    Google Scholar 

  24. 24.

    Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), pp 259–271 (2006)

    Google Scholar 

  25. 25.

    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp 426–434 (2008)

    Google Scholar 

  26. 26.

    Koren, Y., Bell, R., Volinsky, C., et al.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)

    Article  Google Scholar 

  27. 27.

    Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7, 76–80 (2003)

    Article  Google Scholar 

  28. 28.

    Liu, F., Lee, H.J.: Use of social network information to enhance collaborative filtering performance. Expert Syst. Appl. 37, 4772–4778 (2010)

    Article  Google Scholar 

  29. 29.

    Liu, Y., Zhao, P., Liu, X., Wu, M., Li, X.L.: Learning optimal social dependency for recommendation. Inf. Retr. J (2016)

  30. 30.

    Lu, Y., Tsaparas, P., Ntoulas, A., Polanyi, L.: Exploiting social context for review quality prediction. In: Proceedings of the ACM International Conference on World Wide Web (WWW), pp 691–700 (2010)

    Google Scholar 

  31. 31.

    Ma, H.: An experimental study on implicit social recommendation. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 73–82 (2013)

    Google Scholar 

  32. 32.

    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM) (2011)

    Google Scholar 

  33. 33.

    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annu. Rev. Sociol., 415–444 (2001)

  34. 34.

    Mei, Q., Cai, D., Zhang, D., Zhai, C.: Topic modeling with network regularization. In: Proceedings of the ACM International Conference on World Wide Web (WWW), pp 101–110 (2008)

    Google Scholar 

  35. 35.

    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the ACM International Conference on Digital Libraries (DL), ACM, pp 195–204 (2000)

    Google Scholar 

  36. 36.

    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14, 265–294 (1978)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Dunker, A.K.: Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins: Struct., Funct., Bioinf. 61, 176–182 (2005)

    Article  Google Scholar 

  38. 38.

    Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311, 854–856 (2006)

    Article  Google Scholar 

  39. 39.

    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in Recommender System-A Case Study. Technical report, DTIC Document (2000)

  40. 40.

    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the ACM International Conference on World Wide Web (WWW), pp 285–295 (2001)

    Google Scholar 

  41. 41.

    Shapira, B., Ricci, F., Kantor, P.B. (eds.). L.R.: Recommender systems handbook (2011)

  42. 42.

    Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the ACM International Conference on World Wide Web (WWW), pp 327–336 (2008)

    Google Scholar 

  43. 43.

    Slovic, P.: The construction of preference. Am. Psychol. 50, 364 (1995)

    Article  Google Scholar 

  44. 44.

    Tang, J., Hu, X., Gao, H., Liu, H.: Exploiting local and global social context for recommendation. In: Proceedings of the ACM International Joint Conference on Artificial Intelligence (IJCAI), pp 264–269 (2013)

    Google Scholar 

  45. 45.

    Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 1039–1048 (2010)

    Google Scholar 

  46. 46.

    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), pp 261–270 (2010)

    Google Scholar 

  47. 47.

    Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Trans. Cybern. 45, 416–429 (2015)

    Article  Google Scholar 

  48. 48.

    Wu, J., Pan, S., Zhu, X., Zhang, P., Zhang, C.: Sode: Self-adaptive one-dependence estimators for classification. Pattern Recogn. 51, 358–377 (2016)

    Article  Google Scholar 

  49. 49.

    Wu, J., Pan, S., Zhu, X., Zhang, C., Wu, X.: Positive and unlabeled multi-graph learning. IEEE Trans. Cybern. 47, 818–829 (2017)

    Article  Google Scholar 

  50. 50.

    Wu, J., Pan, S., Zhu, X., Zhang, C., Yu, P.S.: Multiple structure-view learning for graph classification. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–15 (2017)

    Google Scholar 

  51. 51.

    Xin, X., King, I., Deng, H., Lyu, M.R.: A social recommendation framework based on multi-scale continuous conditional random fields. In: Proceedings of the ACM International Conference on Information & Knowledge Management (CIKM), pp 1247–1256 (2009)

    Google Scholar 

  52. 52.

    Yao, W., He, J., Huang, G., Cao, J., Zhang, Y.: A graph-based model for context-aware recommendation using implicit feedback data. World Wide Web 18, 1351–1371 (2015)

    Article  Google Scholar 

  53. 53.

    Zhang, Y., Koren, J.: Efficient bayesian hierarchical user modeling for recommendation system. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp 47–54 (2007)

    Google Scholar 

  54. 54.

    Zeilberger, D.: Garsia and Milne’s bijective proof of the inclusion-exclusion principle. Discret. Math. 51, 109–110 (1984)

    MathSciNet  Article  Google Scholar 

  55. 55.

    Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Natl. Acad. Sci. 107, 4511–4515 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council (ARC) Discovery Projects (Nos. DP140102206 and DP140100545) and Linkage Projects (Nos. LP150100671 and LP160100630).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wu, J., Zhang, Q. et al. Dual influence embedded social recommendation. World Wide Web 21, 849–874 (2018). https://doi.org/10.1007/s11280-017-0486-5

Download citation

Keywords

  • Social influence regularization
  • Influence maximization
  • Dual influence
  • Social recommendation