GP-selector: a generic participant selection framework for mobile crowdsourcing systems


Participant selection is a common and crucial function for mobile crowdsourcing (MCS) systems or platforms. This paper introduces a generic framework, named GP-Selector, to handle the participant selection from MCS task creation time to runtime. Compared to existing approaches, ours has the following two unique features. 1) In the task creation time, it assists task creators with diverse levels of programming skills to define basic requirements of participant selection. 2) In the runtime, it adopts a two-phase selection process to select participants who not only meet the basic requirements but also are willing to accept the task. Specifically, we utilize the state-of-the-art techniques including ontology modeling, end-user programming and multi-classifier fusion to implement GP-Selector. We evaluate GP-Selector extensively in three aspects: the end-user task creation, the expressiveness of the core ontology model, and the willingness-based selection algorithm. The evaluation results demonstrate the usability and effectiveness.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    Aanensen, D.M., Huntley, D.M., Feil, E.J., Spratt, B.G., et al.: Epicollect: linking smartphones to Web applications for epidemiology, ecology and community data collection. PloS one 4(9), e6968 (2009)

    Article  Google Scholar 

  2. 2.

    Ahmadi, H., Pham, N., Ganti, R., Abdelzaher, T., Nath, S., Han, J.: Privacy-aware regression modeling of participatory sensing data. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pp 99–112. ACM (2010)

  3. 3.

    Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability evaluation in industry 189(194), 4–7 (1996)

    Google Scholar 

  4. 4.

    Burke, J.A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. Center for Embedded Network Sensing (2006)

  5. 5.

    Cardone, G., Foschini, L., Bellavista, P., Corradi, A., Borcea, C., Talasila, M., Curtmola, R.: Fostering participation in smart cities: a geo-social crowdsensing platform. IEEE Commun. Mag. 51(6), 112–119 (2013)

    Article  Google Scholar 

  6. 6.

    Carrapetta, J., Youdale, N., Chow, A., Sivaraman, V.: Haze watch project. Online: (accessed in January 2011) (2010)

  7. 7.

    Chen, C., Zhang, D., Ma, X., Guo, B., Wang, L., Wang, Y., Sha, E.: Crowddeliver: planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Trans. Intell. Transp. Syst. PP(99), 1–19 (2016)

    Article  Google Scholar 

  8. 8.

    Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.: Anonysense: privacy-aware people-centric sensing. In: Proceedings of the 6Th International Conference on Mobile Systems, Applications, and Services, pp 211–224. ACM (2008)

  9. 9.

    Cuervo, E., Gilbert, P., Wu, B., Cox, L.P.: Crowdlab: an architecture for volunteer mobile testbeds. In: Third International Conference on Communication Systems and Networks (COMSNETS), 2011, pp 1–10. IEEE (2011)

  10. 10.

    Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R., Sharma, A.: Prism: platform for remote sensing using smartphones. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, pp 63–76. ACM (2010)

  11. 11.

    Döbrich, U., Noury, P.: ESPRIT Project NOAH Introduction. Springer (1999)

  12. 12.

    Dong, Y.F., Kanhere, S., Chou, C.T., Bulusu, N.: Automatic collection of fuel prices from a network of mobile cameras. In: Distributed Computing in Sensor Systems, pp 140–156. Springer (2008)

  13. 13.

    Guo, B., Wang, Z., Yu, Z., Wang, Y., Yen, N.Y., Huang, R., Zhou, X.: Mobile crowd sensing and computing: the review of an emerging human-powered sensing paradigm. ACM Comput. Surv. 48(1), 7 (2015)

    Article  Google Scholar 

  14. 14.

    Guo, B., Chen, H., Han, Q., Yu, Z., Zhang, D., Wang, Y.: Worker-contributed data utility measurement for visual crowdsensing systems. IEEE Trans. Mob. Comput. PP(99), 1–1 (2016)

    Google Scholar 

  15. 15.

    Gustarini, M., Wac, K., Dey, A.K.: Anonymous smartphone data collection: factors influencing the users’ acceptance in mobile crowd sensing. Pers. Ubiquit. Comput. 20(1), 65–82 (2016)

    Article  Google Scholar 

  16. 16.

    Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., Borriello, G.: Open data kit: tools to build information services for developing regions. In: Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development, p 18. ACM (2010)

  17. 17.

    He, S., Shin, D.H., Zhang, J., Chen, J.: Toward optimal allocation of location dependent tasks in crowdsensing. In: INFOCOM, 2014 Proceedings IEEE, pp 745–753. IEEE (2014)

  18. 18.

    Heggen, S., Adagale, A., Payton, J.: Lowering the barrier for crowdsensing application development. In: Mobile Computing, Applications, and Services, pp 1–18. Springer (2013)

  19. 19.

    Howe, J.: The rise of crowdsourcing. 06 Jenkins H Convergence Culture Where Old and New Media Collide 14(14), 1–5 (2006)

    Google Scholar 

  20. 20.

    Joki, A., Burke, J.A., Estrin, D.: Campaignr: a framework for participatory data collection on mobile phones. Center for Embedded Network Sensing (2007)

  21. 21.

    Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of owl ontologies into java. In: SEKE, Citeseer, vol. 4, pp 98–103 (2004)

  22. 22.

    Kazai, G.: In search of quality in crowdsourcing for search engine evaluation (2011)

  23. 23.

    Kim, S., Mankoff, J., Paulos, E.: Sensr: evaluating a flexible framework for authoring mobile data-collection tools for citizen science. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, pp 1453–1462. ACM (2013)

  24. 24.

    Lee, J.S., Hoh, B.: Dynamic pricing incentive for participatory sensing. Pervasive Mob. Comput. 6(6), 693–708 (2010)

    Article  Google Scholar 

  25. 25.

    Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp 323–336. ACM (2008)

  26. 26.

    Narasimhamurthy, A.: Theoretical bounds of majority voting performance for a binary classification problem. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1988–1995 (2005)

    Article  Google Scholar 

  27. 27.

    Ra, M.R., Liu, B., La, Porta TF, Govindan, R.: Medusa: a programming framework for crowd-sensing applications. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp 337–350. ACM (2012)

  28. 28.

    Ramanathan, N., Alquaddoomi, F., Falaki, H., George, D., Hsieh, C.K., Jenkins, J., Ketcham, C., Longstaff, B., Ooms, J., Selsky, J., et al.: Ohmage: an open mobile system for activity and experience sampling. In: 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012, pp 203–204. IEEE (2012)

  29. 29.

    Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp 105–116. ACM (2010)

  30. 30.

    Ravindranath, L., Thiagarajan, A., Balakrishnan, H., Madden, S.: Code in the air: simplifying sensing and coordination tasks on smartphones. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications, p 4. ACM (2012)

  31. 31.

    Reddy, S., Shilton, K., Burke, J., Estrin, D., Hansen, M.H., Srivastava, M.B.: Using context annotated mobility profiles to recruit data collectors in participatory sensing. In: Location and Context Awareness, International Symposium, Loca 2009, Tokyo, Japan, May 7–8, 2009, Proceedings, pp 52–69 (2009)

  32. 32.

    Reddy, S., Shilton, K., Denisov, G., Cenizal, C., Estrin, D., Srivastava, M.: Biketastic: sensing and mapping for better biking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp 1817–1820. ACM (2010)

  33. 33.

    Song, Z., Zhang, B., Liu, C.H., Vasilakos, A.V., Ma, J., Wang, W.: Qoi-aware energy-efficient participant selection. In: Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2014, pp 248–256. IEEE (2014)

  34. 34.

    Usability of the end user development tool., accessed: 2010-09-30 (2016)

  35. 35.

    Väätäjä, H., Sirkkunen, E., Ahvenainen, M.: A field trial on mobile crowdsourcing of news content factors influencing participation. In: Human-Computer Interaction–INTERACT 2013, pp 54–73. Springer (2013)

  36. 36.

    Wang, J., Helal, S., Wang, Y., Zhang, D.: Wselector: a multi-scenario and multi-view worker selection framework for crowd-sensing. In: UIC, pp 54–61 (2015)

  37. 37.

    Wang, J., Wang, Y., Zhao, J.: Helping campaign initiators create mobile crowd sensing apps: a supporting framework. In: IEEE 39Th Annual Computer Software and Applications Conference (COMPSAC), 2015, vol. 2. IEEE (2015)

  38. 38.

    Wang, J., Wang, Y., Helal, S., Zhang, D.: A context-driven worker selection framework for crowd-sensing. Int. J. Distrib. Sens. Netw. 2016(3), 1–16 (2016)

    Google Scholar 

  39. 39.

    Wang, J., Wang, Y., Zhang, D., Wang, L., Chen, C., Lee, J.W., He, Y.: Real-time and generic queue time estimation based on mobile crowdsensing. Front. Comp. Sci. 1–12 (2016)

  40. 40.

    Wang, J., Wang, Y., Zhang, D., Wang, L., Xiong, H., Helal, S., He, Y., Wang, F.: Fine-grained multi-task allocation for participatory sensing with a shared budget. IEEE Internet of Things Journal PP(99), 1–1 (2016)

    Google Scholar 

  41. 41.

    Wang, J., Wang, Y., Zhang, D., Wang, F., He, Y., Ma, L.: Psallocator: multi-task allocation for participatory sensing with sensing capability constraints. In: ACM Conference on Computer Supported Cooperative Work and Social Computing, pp 1139–1151 (2017)

  42. 42.

    Wang, Y., Wang, J., Zhang, X.: Qtime: a queuing-time notification system based on participatory sensing data. In: IEEE 37th Annual Computer Software and Applications Conference (COMPSAC), 2013, pp 770–777. IEEE (2013)

  43. 43.

    Wang, L., Zhang, D., Wang, Y., Chen, C., Han, X., M’hamed, A.: Sparse mobile crowdsensing: challenges and opportunities. IEEE Commun. Mag. 54(7), 161–167 (2016)

    Article  Google Scholar 

  44. 44.

    Wong, J.: Marmite: towards end-user programming for the Web. In: IEEE Symposium on Visual Languages and Human-Centric Computing, 2007. VL/HCC 2007, pp 270–271. IEEE (2007)

  45. 45.

    Xiao, Y., Simoens, P., Pillai, P., Ha, K., Satyanarayanan, M.: Lowering the barriers to large-scale mobile crowdsensing. In: Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, p 9. ACM (2013)

  46. 46.

    Yu, Z., Xu, H., Yang, Z., Guo, B.: Personalized travel package with multi-point-of-interest recommendation based on crowdsourced user footprints. IEEE Transactions on Human-Machine Systems 46(1), 151–158 (2016)

    Article  Google Scholar 

  47. 47.

    Zhang, D., Xiong, H., Wang, L., Chen, G.: Crowdrecruiter: selecting participants for piggyback crowdsensing under probabilistic coverage constraint. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp 703–714. ACM (2014)

  48. 48.

    Zhou, P., Zheng, Y., Li, M.: How long to wait?: predicting bus arrival time with mobile phone based participatory sensing. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp 379–392. ACM (2012)

Download references


This work is supported by the Key Program of National Natural Science Foundation of China (91546203) and Chinese Postdoctoral Science Foundation (2016M600014).

Author information



Corresponding authors

Correspondence to Jiangtao Wang or Yasha Wang.

Additional information

This article belongs to the Topical Collection: Special Issue on Mobile Crowdsourcing

Guest Editors: Bin Guo, Xing Xie, Raghu K. Ganti, Daqing Zhang, and Zhu Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y., Wang, L. et al. GP-selector: a generic participant selection framework for mobile crowdsourcing systems. World Wide Web 21, 759–782 (2018).

Download citation


  • Mobile crowdsourcing
  • Mobile crowdsensing
  • Participant selection