Aouad, L. M., Le-Khac, N. A., Kechadi, T. M.: Performance study of distributed apriori-like frequent itemsets mining. Knowl. Inf. Syst. 23(1), 55–72 (2010)
Article
Google Scholar
Boley, M., Grosskreutz, H.: Approximating the number of frequent sets in dense data. Knowl. Inf. Syst. 21(1), 65–89 (2009)
Article
Google Scholar
Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product assortment decisions: a case study. In: SIGKDD, pp. 254–260. ACM (1999)
Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for computing the entropy of a stream. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 328–335. Society for Industrial and Applied Mathematics (2007)
Chang, J. H., Lee, W. S.: Finding recent frequent itemsets adaptively over online data streams. In: SIGKDD, pp. 487–492. ACM (2003)
Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Automata, Languages and Programming, pp. 693–703. Springer (2002)
Chen, L., Mei, Q.: Mining frequent items in data stream using time fading model. Inform. Sci. 257, 54–69 (2014)
MathSciNet
Article
MATH
Google Scholar
Chen, L., Zhang, S., Tu, L.: An algorithm for mining frequent items on data stream using fading factor. In: COMPSAC, vol. 2, pp. 172–177. IEEE (2009)
Chen, L., Zou, L. J., Tu, L.: A clustering algorithm for multiple data streams based on spectral component similarity. Inform. Sci. 183(1), 35–47 (2012)
Article
Google Scholar
Cormode, G., Hadjieleftheriou, M.: Finding the frequent items in streams of data. Commun. ACM 52(10), 97–105 (2009)
Article
Google Scholar
Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)
MathSciNet
Article
MATH
Google Scholar
Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)
Article
Google Scholar
Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward decay: a practical time decay model for streaming systems. In: ICDE, pp. 138–149. IEEE (2009)
Floyd, R. W.: Algorithm 245: Treesort. Commun. ACM 7(12), 701 (1964)
Article
Google Scholar
Golab, L., DeHaan, D., Demaine, E. D., Lopez-Ortiz, A., Munro, J. I.: Identifying frequent items in sliding windows over on-line packet streams. In: SIGCOMM, pp. 173–178. ACM (2003)
Homem, N., Carvalho, J. P.: Finding top-k elements in data streams. Inform. Sci. 180(24), 4958–4974 (2010)
Article
Google Scholar
Jin, C., Qian, W., Sha, C., Yu, J. X., Zhou, A.: Dynamically maintaining frequent items over a data stream. In: CIKM, pp. 287–294. ACM (2003)
Karp, R. M., Shenker, S., Papadimitriou, C. H.: A simple algorithm for finding frequent elements in streams and bags. ACM Trans. Database Syst. 28(1), 51–55 (2003)
Article
Google Scholar
Li, H. F., Huang, H. Y., Lee, S. Y.: Fast and memory efficient mining of high-utility itemsets from data streams: with and without negative item profits. Knowl. Inf. Syst. 28(3), 495–522 (2011)
Article
Google Scholar
Lim, Y., Choi, J., Kang, U.: Fast, accurate, and space-efficient tracking of time-weighted frequent items from data streams. In: CIKM, pp. 1109–1118. ACM (2014)
Lin, Z., Jiang, B., Pei, J., Jiang, D.: Mining discriminative items in multiple data streams. World Wide Web Journal 13(4), 497–522 (2010)
Article
Google Scholar
Manerikar, N., Palpanas, T.: Frequent items in streaming data: an experimental evaluation of the state-of-the-art. Data Knowl. Eng. 68(4), 415–430 (2009)
Article
Google Scholar
Manku, G. S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357. VLDB Endowment (2002)
Mei, Q. L., Chen, L.: An algorithm for mining frequent stream data items using hash function and fading factor. In: Applied Mechanics and Materials, vol. 130, pp. 2661–2665. Trans Tech Publ (2012)
Metwally, A., Agrawal, D., Abbadi, A. E.: An integrated efficient solution for computing frequent and top-k elements in data streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)
Article
Google Scholar
Shaker, A., Senge, R., Hüllermeier, E.: Evolving fuzzy pattern trees for binary classification on data streams. Inform. Sci. 220, 34–45 (2013)
Article
Google Scholar
Tantono, F. I., Manerikar, N., Palpanas, T.: Efficiently discovering recent frequent items in data streams. In: Scientific and Statistical Database Management, pp. 222–239. Springer (2008)
Tong, Y., Zhang, X., Chen, L.: Tracking frequent items over distributed probabilistic data. World Wide Web Journal, 1–26 (2015)
Wei, Z., Liu, X., Li, F., Shang, S., Du, X., Wen, J.: Matrix sketching over sliding windows. In: SIGMOD, pp. 1465–1480 (2016)
Woo, H. J., Lee, W. S.: Estmax: Tracing maximal frequent item sets instantly over online transactional data streams. IEEE Trans. Knowl. Data Eng. 21(10), 1418–1431 (2009)
Article
Google Scholar
Wu, S., Lin, H., U, L.H., Gao, Y., Lu, D.: Finding frequent items in time decayed data streams. In: Apweb, pp. 17–29 (2016)
Zhang, S., Chen, L., Tu, L.: Frequent items mining on data stream based on time fading factor. In: AICI, vol. 4, pp. 336–340. IEEE (2009)
Zhang, S., Chen, L., Tu, L.: Frequent items mining on data stream using hash-table and heap. In: ICIS, vol. 1, pp. 141–145. IEEE (2009)