Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 354–364 (1997)
MathSciNet
MATH
Google Scholar
Angel, A., Koudas, N., Sarkas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB 5(6), 574–585 (2012)
Google Scholar
Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. PVLDB 5(5), 454–465 (2012)
Google Scholar
Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: KDD, pp 16–24 (2008)
Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: KDD, pp 1316–1325 (2014)
Chan, K.Y.Y., Vitevitch, M.S.: The influence of the phonological neighborhood clustering coefficient on spoken word recognition. J. Exp. Psychol. Hum. Percept. Perform. 35(6), 1934–1949 (2009)
Article
Google Scholar
Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In: KDD, pp. 672–680 (2011)
Coleman, J.S.: Social Capital in the Creation of Human Capital. Am. J. Sociol. 94, S95–S120 (1988)
Article
Google Scholar
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: STOC, pp. 1–6 (1987)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)
Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31, 182–209 (1985)
MathSciNet
Article
MATH
Google Scholar
Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on world wide web, pp 47–48. ACM (2011)
Huang, X., Cheng, H., Li, R.-H., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks. Proc. VLDB Endow. 6(13), 1618–1629 (2013)
Article
Google Scholar
Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp 1311–1322 (2014)
Huang, X., Lakshmanan, L.V., Yu, J.X., Cheng, H.: Approximate closest community search in networks. Proc. VLDB Endowment 9(4), 276–287 (2015)
Article
Google Scholar
Huang, X., Lu, W., Lakshmanan, L.V.: Truss decomposition of probabilistic graphs: Semantics and algorithms (2016)
Book
Google Scholar
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 58, 1–11 (2008)
Article
Google Scholar
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: STOC, pp. 1–10 (1977)
Jha, M., Seshadhri, C., Pinar, A.: A space efficient streaming algorithm for triangle counting using the birthday paradox. In: KDD, pp 589–597 (2013)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp 137–146 (2003)
Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Comput. Sci. 407(1 - 3), 458–473 (2008)
MathSciNet
Article
MATH
Google Scholar
Lin, X., Yuan, Y., Zhang, Q., stars, Y. Zhang. Selecting.: The k most representative skyline operator. In: ICDE, pp 86–95 (2007)
Lu, J., Senellart, P., Lin, C., Du, X., Wang, S., Chen, X.: Optimal top-k generation of attribute combinations based on ranked lists. In: SIGMOD, pp 409–420 (2012)
Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: Top-k keyword query in relational databases. In: SIGMOD, pp. 115–126 (2007)
Olsen, P.W., Labouseur, A.G., Hwang, J.-H: Efficient top-k closeness centrality search IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014. (2014) doi:10.1109/ICDE.2014.6816651
Google Scholar
Pfeiffer III, J.J., Neville, J.: Methods to determine node centrality and clustering in graphs with uncertain structure. arXiv preprint arXiv:1104.0319(2011)
Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. Proc. VLDB Endow. 1124–1135 (2012)
Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)
Article
Google Scholar
Soffer, S.N., Vázquez, A.: Network clustering coefficient without degree-correlation biases. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5) (2005)
Strogatz, S.H.: Exploring complex networks. Nature 6825, 268–276 (2001)
Article
Google Scholar
Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In: WWW, pp. 607–614 (2011)
Tangwongsan, K., Pavan, A., Tirthapura, S.: Parallel triangle counting in massive streaming graphs. In: CIKM, pp. 781–786 (2013)
L.H.U., Mamoulis, N., Berberich, K., Bedathur, S.: Durable top-k search in document archives. In: SIGMOD, pp. 555–566 (2010)
Wang, H., Li, M., Wang, J., Pan, Y.: A new method for identifying essential proteins based on edge clustering coefficient, pp. 87–98 (2011)
Google Scholar
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–10 (1998)
Article
Google Scholar
Yan, X., He, B., Zhu, F., Han, J.: Top-k aggregation queries over large networks. In: ICDE (2010)
Yu, A., Agarwal, P.K., Yang, J.: Processing a large number of continuous preference top-k queries. In: SIGMOD, pp. 397–408 (2012)