World Wide Web

, Volume 18, Issue 4, pp 1019–1049 | Cite as

Locating targets through mention in Twitter

Article

Abstract

With the explosive development of social networks, there are excessive amount of user-generated contents available on social media platforms. Indeed, in social networks, it is now a big challenge to promote the right information to the right audiences at the right time. To this end, in this paper, we propose an integrated study of the mention mechanism in social media platforms, such as Twitter, towards locating target audiences for specific information. The study goal is to identify effective targets with high relevance and achieve high response rate as well. Along this line, we formulate the problem of locating targets when posting promotion-oriented messages as a ranking based recommendation task, and present a context-aware recommendation framework as a solution. Specifically, we first extract four categories of features, namely content, social, location and time based features, to measure the relevance among publishers, targets and promotion messages. Then, we employ Ranking Support Vector Machine (SVM) model as the solution to our ranking based recommendation problem. By introducing two bias adjustment parameters, i.e., confidence contributions of publishers and the responsiveness of targets, our framework can effectively recommend top K proper users to mention. Finally, to validate the proposed approach, we conduct extensive experiments on a real world dataset collected from Twitter. The experimental results clearly show that our approach outperforms other baselines with a significant margin.

Keywords

Recommender system Ranking SVM Mention mechanism Twitter Social media marketing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. Knowledge and Data Engineering. IEEE Trans. on 24(5), 896–911 (2012)Google Scholar
  2. 2.
    Airola, A., Pahikkala, T., Salakoski, T.: An improved training algorithm for the linear ranking support vector machine, pp. 134–141. Springer (2011)Google Scholar
  3. 3.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  4. 4.
    Berger, C., Calabrese, R.: Some explorations in initial interaction and beyond: Toward a developmental theory of interpersonal communication. Hum. Commun. Res. 1(2), 99–112 (2006)CrossRefGoogle Scholar
  5. 5.
    Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. the J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  6. 6.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter (2010)Google Scholar
  7. 7.
    Burton, S., Soboleva, A.: Interactive or reactive? marketing with twitter. J. Consum. Mark. 28(7), 491–499 (2011)CrossRefGoogle Scholar
  8. 8.
    Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking svm to document retrieval (2006)Google Scholar
  9. 9.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter (2011)Google Scholar
  10. 10.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: The million follower fallacy. ICWSM 10, 10–17 (2010)Google Scholar
  11. 11.
    Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams (2010)Google Scholar
  12. 12.
    Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in twitter (2012)Google Scholar
  13. 13.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys (2010)Google Scholar
  14. 14.
    Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.: An empirical study on learning to rank of tweets (2010)Google Scholar
  15. 15.
    Easley, D., Kleinberg, J.: Networks, crowds, and markets, Cambridge Univ Press (2010)Google Scholar
  16. 16.
    Emerson, B., Amos, J.: The Tasti D-Lite Way: Social Media Marketing Lessons for Building Loyalty and a Brand Customers Crave. McGraw-Hill (2012)Google Scholar
  17. 17.
    Griffiths, T.L., Steyvers, M., Blei, D.M., Tenenbaum, J.B.: Integrating topics and syntax. Adv. in neural Inf. Process. Syst. 17, 537–544 (2005)Google Scholar
  18. 18.
    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations (2009)Google Scholar
  19. 19.
    Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches (2010)Google Scholar
  20. 20.
    Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. Adv. in neural Inf. Process. Syst., 115–132 (1999)Google Scholar
  21. 21.
    Hill, W., Terveen, L.: Using frequency-of-mention in public conversations for social filtering (1996)Google Scholar
  22. 22.
    Hoffman, D.L., Fodor, M.: Can you measure the roi of your social media marketing. MIT Sloan Manag. Rev. 52(1), 41–49 (2010)Google Scholar
  23. 23.
    Honey, C., Herring, S.: Beyond microblogging: Conversation and collaboration via twitter (2009)Google Scholar
  24. 24.
    Hong, L., Davison, B.: Empirical study of topic modeling in twitter (2010)Google Scholar
  25. 25.
    Java, A., Song, X., Finin, T., Tseng, B.: New York, NY, USA (2007). doi:10.1145/1348549.1348556
  26. 26.
    Joachims, T.: Optimizing search engines using clickthrough data (2002)Google Scholar
  27. 27.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)MATHCrossRefGoogle Scholar
  28. 28.
    Kim, Y.S.: Tran. V.: Selecting core target users for online social networking marketing with target marketing: A preliminary report (2011)Google Scholar
  29. 29.
    Kotler, P.: Marketing management. Pearson Education India (2009)Google Scholar
  30. 30.
    Kullback, S.: Information theory and statistics. Dover publications (1997)Google Scholar
  31. 31.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? (2010)Google Scholar
  32. 32.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  33. 33.
    Lv, Y., Moon, T., Kolari, P., Zheng, Z., Wang, X., Chang, Y.: Learning to model relatedness for news recommendation (2011)Google Scholar
  34. 34.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations (2002)Google Scholar
  35. 35.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization (2000)Google Scholar
  36. 36.
    Naaman, M., Boase, J., Lai, C.: Is it really about me?: message content in social awareness streams (2010)Google Scholar
  37. 37.
    Pazzani, M.J., Muramatsu, J., Billsus, D., et al.: Syskill & webert: Identifying interesting web sites (1996)Google Scholar
  38. 38.
    Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation (2009)Google Scholar
  39. 39.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Commun. of the ACM 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  40. 40.
    Stelzner, M.: Social media marketing industry report. How Marketers Are Using Social Media to Grow Their Businesses. Online-Dokument. (2011). http://www.socialmediaexaminer.com/SocialMediaMarketingReport2011.pdf
  41. 41.
    Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network (2010)Google Scholar
  42. 42.
    Takeuchi, Y., Sugimoto, M.: Cityvoyager: an outdoor recommendation system based on user location history (2006)Google Scholar
  43. 43.
    Veness, C.: Vincenty formula for distance between two latitude/longitude points (2007)Google Scholar
  44. 44.
    Wang, B., Wang, C., Bu, J., Chen, C., Zhang, W.V., Cai, D., He, X.: Whom to mention: expand the diffusion of tweets by@ recommendation on micro-blogging systems. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  45. 45.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers (2010)Google Scholar
  46. 46.
    Wu, L., Yang, L., Yu, N., Hua, X.S.: Learning to tag (2009)Google Scholar
  47. 47.
    Wu, W., Zhang, B., Ostendorf, M.: Automatic generation of personalized annotation tags for twitter users (2010)Google Scholar
  48. 48.
    Xing, W., Ghorbani, A.: Weighted pagerank algorithm (2004)Google Scholar
  49. 49.
    Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X., Yoo, J.S.: A framework for discovering co-location patterns in data sets with extended spatial objects, p. 89, Florida, USA (2004)Google Scholar
  50. 50.
    Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual role affect hashtag adoption? (2012)Google Scholar
  51. 51.
    Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social networks (2010)Google Scholar
  52. 52.
    Zarrella, D.: The social media marketing book. O’Reilly (2010)Google Scholar
  53. 53.
    Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. Springer (2011)Google Scholar
  54. 54.
    Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with gps history data (2010)Google Scholar
  55. 55.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories (2009)Google Scholar
  56. 56.
    Zhu, H., Cao, H., Chen, E., Xiong, H., Tian, J.: New York, NY, USA (2012). doi:10.1145/2396761.2398484
  57. 57.
    Zhu, H., Cao, H., Xiong, H., Chen, E., Tian, J.: New York, NY, USA (2011). doi:10.1145/2063576.2063931

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Hefei University of TechnologyHefeiChina
  2. 2.Rutgers, The State University of New JerseyNewarkUSA
  3. 3.University of Science and Technology of ChinaHefeiChina

Personalised recommendations