World Wide Web

, Volume 18, Issue 1, pp 139–157 | Cite as

Trust-aware media recommendation in heterogeneous social networks

  • Jian Wu
  • Liang ChenEmail author
  • Qi Yu
  • Panpan Han
  • Zhaohui Wu


Social network sites, such as Facebook and Twitter, are gaining increasing popularity nowadays by providing a convenient platform for sharing and consuming information of all kinds. While the ever increasing information sources on the social network sites hold tremendous promise, how to select user interested information becomes nontrivial as users are easily overloaded by a vast amount candidate information sources. Furthermore, as the information providers are autonomous entities in an open social network environment, they may spread information that is unreliable or completely fake. Hence, technological advances are in demand to recommend information sources to social network users that both match their interests and come from reliable information sources. We develop a novel social media recommendation framework, referred to as GCCR, to tackle the above central challenges. GCCR is coined based on the key technologies that supports the proposed framework: Graph summarization, Content-based approach, Clustering, and Recommendation. A user-centric strategy is adopted that exploits the historical behavior of a set of seed users as evidence to assess the trustworthiness of different information providers. A two-phase process that employs graph summarization and content-based clustering is developed to partition users into different interest groups. The interest group information is then used for recommendation purpose. We perform extensive experiments on real-world social network data to assess the effectiveness of the proposed GCCR framework.


Media recommendation Trust Heterogeneous social network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI ’98: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998)Google Scholar
  2. 2.
    Canny, J.: Collaborative filtering with privacy via factor analysis. In: SIGIR ’02: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 238–245. ACM, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Cilibrasi, R.L., Vitnyi, P.M.B.:The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)CrossRefGoogle Scholar
  4. 4.
    Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., Nahrstedt, K.: A trust management framework for service-oriented environments. In: WWW ’09: Proceedings of the 18th International Conference on World Wide Web, pp. 891–900. ACM, New York (2009)CrossRefGoogle Scholar
  5. 5.
    Dellarocas, C.: The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Manag. Sci. 49(10), 1407–1424 (2003)CrossRefGoogle Scholar
  6. 6.
    Douban: Accessed 14 Jul 2013
  7. 7.
    Facebook: Accessed 14 Jul 2013
  8. 8.
    Geyer, W., Dugan, C., Millen, D.R., Muller, M., Freyne, J.: Recommending topics for self-descriptions in online user profiles. In: RecSys’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 59–66 (2008)Google Scholar
  9. 9.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  10. 10.
    Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: GROUP’07: Proceedings of the 2007 International ACM Conference on Supporting Group Work, pp. 127–136 (2007)Google Scholar
  11. 11.
    Herlocker, J.L., Konstan, J. A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 230–237. ACM, New York (1999)CrossRefGoogle Scholar
  12. 12.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004)CrossRefGoogle Scholar
  13. 13.
    John, H., Mike, B., Barry, S.: Recommending twitter users to follow using content and collaborative filtering approaches. In: RecSys’10: Proceedings of the 4th ACM Conference on Recommender Systems, pp. 199–206 (2010)Google Scholar
  14. 14.
    Kalepu, S., Krishnaswamy, S., Loke, S.W.: Reputation = f(user ranking, compliance, verity). In: ICWS ’04: Proceedings of the IEEE International Conference on Web Services, p. 200. IEEE Computer Society, Washington (2004)CrossRefGoogle Scholar
  15. 15.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: WWW ’03: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Kim, Y., Shim, K.: Twitobi: A recommendation system for twitter using probabilistic modeling. In: ICDM’11: Proceedings of the 11th International Conference on Data Mining, pp. 340–349 (2011)Google Scholar
  17. 17.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: WWW ’10: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600 (2010)Google Scholar
  18. 18.
    Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based colaborative filtering. In: SDM’05: Proceedings of the SIAM Data Mining, pp. 1–5 (2005)Google Scholar
  19. 19.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  20. 20.
    Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establishment among web services. VLDB J. 18(4), 885–911 (2009)CrossRefGoogle Scholar
  21. 21.
    Myspace: Accessed 14 Jul 2013
  22. 22.
    Park, S., Liu, L., Pu, C., Srivatsa, M., Zhang, J.: Resilient trust management for web service integration. In: ICWS ’05: Proceedings of the IEEE International Conference on Web Services, pp. 499–506. IEEE Computer Society, Washington (2005)Google Scholar
  23. 23.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender systems handbook. Springer (2011)Google Scholar
  24. 24.
    Sakaguchi, T., Akaho Y., Takagi, T., Shintani, T.: Recommendations in twitter using conceptual fuzzy sets. In: NAFIPS’10: Proceedings of the 2010 AnnualMeeting of the NorthAmerican Fuzzy Information Processing Society, pp. 1–6 (2010)Google Scholar
  25. 25.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW ’01: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM, New York (2001)CrossRefGoogle Scholar
  26. 26.
    Scott, P., Jon, W.: A feasibility study on extracting twitter users’ interests using nlp tools for serendipitous connections. In: SocialCom’11: Proceedings of The Third IEEE International Conference on Social Computing, pp. 910–915 (2011)Google Scholar
  27. 27.
    Sina weibo: Accessed 14 Jul 2013
  28. 28.
    Spertus, E., Sahami, M., Buyukkokten, O: Evaluating similarity measures: a large-scale study in the orkut social network. In: KDD’05: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 678–684 (2005)Google Scholar
  29. 29.
    Twitter: Accessed 14 Jul 2013
  30. 30.
    Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer electronic communities. IEEE Trans. Knowl. Data Eng. 16, 843–857 (2004)CrossRefGoogle Scholar
  31. 31.
    Zhang, M., Hurley, N., Monotony, A.: Improving the diversity of recommendation lists. In: RecSys’08: Proceedings of ACM International Conference on Recommender Systems, pp. 123–130 (2008)Google Scholar
  32. 32.
    Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE’10: Proceedings of the 2010 International Conference on Data Engineering, pp. 880–891 (2010)Google Scholar
  33. 33.
    Zhang, Y., Koren, J.: Efficient bayesian hierarchical user modeling for recommendation system. In: SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR Conference onJb Research and Development in Information Retrieval, pp. 47–54. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jian Wu
    • 1
  • Liang Chen
    • 1
    Email author
  • Qi Yu
    • 2
  • Panpan Han
    • 1
  • Zhaohui Wu
    • 1
  1. 1.Computer Science & Technology CollegeZhejiang UniversityZhejiangChina
  2. 2.College of Computing and Information SciencesRochester Institute of TechnologyRochesterUSA

Personalised recommendations