World Wide Web

, Volume 17, Issue 1, pp 1–32 | Cite as

Crowdsourcing tasks to social networks in BPEL4People

Article

Abstract

Human-interactions are a substantial part of today’s business processes. In service-oriented systems this has led to specifications such as WS-HumanTask and BPEL4People which aim at standardizing the interaction protocol between software processes and humans. These specifications received considerable attention from major industry players due to their extensibility and interoperability. Recently, crowdsourcing has emerged as a new paradigm for leveraging a human workforce using Web technologies. We argue that crowdsourcing techniques and platforms could benefit from XML-based standards such as WS-HumanTask and BPEL4People as these specifications allow for extensibility and cross-platform operation. However, most efforts to model human interactions using BPEL4People focus on relatively static role models for selecting the right person to interact with. Thus, BPEL4People is not well suited for specifying and executing processes involving crowdsourcing of tasks to online communities. Here, we extend BPEL4People with non-functional properties that allow to cope with the inherent dynamics of crowdsourcing processes. Such properties include human capabilities and the level of skills. We discuss the formation of social networks that are particularly beneficial for processing extended BPEL4People tasks. Furthermore, we present novel approaches for the automated assignment of tasks to a social group. The feasibility of our approach is shown through a proof of concept implementation of various concepts as well as simulations and experiments to evaluate our ranking and selection approach.

Keywords

crowdsourcing BPEL4People non-functional properties social networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a service-oriented implementation of dynamic flexibility in workflows. In: OTM Conferences (1), pp. 291–308 (2006)Google Scholar
  2. 2.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: WSDM, pp. 183–194. ACM (2008)Google Scholar
  3. 3.
    Agrawal, A., et al.: Ws-bpel extension for people (bpel4people), version 1.0. (2007)Google Scholar
  4. 4.
    Amend, M., et al.: Web services human task (ws-humantask), version 1.0. (2007)Google Scholar
  5. 5.
    Andrews, T., et al.: Business process execution language for web services, version 1.1. (2003)Google Scholar
  6. 6.
    Balthazard, P.A., Potter, R.E., Warren, J.: Expertise, extraversion and group interaction styles as performance indicators in virtual teams: how do perceptions of it’s performance get formed? Data Base 35(1), 41–64 (2004)CrossRefGoogle Scholar
  7. 7.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Benkler, Y.: Coase’s penguin, or linux and the nature of the firm. CoRR, cs.CY/0109077 (2001)Google Scholar
  9. 9.
    Brabham, D.: Crowdsourcing as a model for problem solving: an introduction and cases. Convergence 14(1), 75 (2008)Google Scholar
  10. 10.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Breslin, J., Passant, A., Decker, S.: Social web applications in enterprise. Social Semantic Web 48, 251–267 (2009)CrossRefGoogle Scholar
  12. 12.
    Cozzi, A., Farrell, S., Lau, T., Smith, B.A., Drews, C., Lin, J., Stachel, B., Moran, T.P.: Activity management as a web service. IBM Syst. J. 45(4), 695–712 (2006)CrossRefGoogle Scholar
  13. 13.
    Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsistencies and deviations in human-centered systems. ACM Trans. Softw. Eng. Methodol. 5(3), 191–230 (1996)CrossRefGoogle Scholar
  14. 14.
    Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-Wide Web. Commun. ACM 54(4), 86–96 (2011). doi:10.1145/1924421.1924442 Google Scholar
  15. 15.
    Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. J. ACM 57, 25:1–25:27 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise analysis. In: DMKD, pp. 42–48. ACM (2003)Google Scholar
  17. 17.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press (2010)Google Scholar
  18. 18.
    Gentry, C., Ramzan, Z., Stubblebine, S.: Secure distributed human computation. In: EC ’05, pp. 155–164. ACM (2005)Google Scholar
  19. 19.
    Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable pervasive flows—an emerging technology for pervasive adaptation. In: Workshop on Pervasive Adaptation (PerAda) (2008)Google Scholar
  20. 20.
    Howe, J.: The rise of crowdsourcing. http://www.wired.com/wired/archive/14.06/crowds.html (2006)
  21. 21.
    IBM: An architectural blueprint for autonomic computing (whitepaper) (2005)Google Scholar
  22. 22.
    Ipeirotis, P.G.: Analyzing the Amazon mechanical turk marketplace. SSRN eLibrary 17(2), 16–21 (2010)Google Scholar
  23. 23.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51(11), 66–72 (2008)CrossRefGoogle Scholar
  25. 25.
    Kosorukoff, A., Goldberg, D.E.: Genetic algorithms for social innovation and creativity. Technical report, University of Illinois at Urbana-Champaign (2001)Google Scholar
  26. 26.
    Kumar, A., W.M.Aalst, P.V.D., Verbeek, E.: Dynamic work distribution in workflow management systems: how to balance quality and performance. J. Manage Inf. Syst. 18(3), 157–193 (2002)Google Scholar
  27. 27.
    Lampe, C., Resnick, P.: Slash(dot) and burn: distributed moderation in a large online conversation space. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pp. 543–550. ACM, New York, NY, USA (2004)Google Scholar
  28. 28.
    Liu, L., Thanheiser, S., Schmeck, H.: A reference architecture for self-organizing service-oriented computing. In: ARCS, pp. 205–219 (2008)Google Scholar
  29. 29.
    Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In: ICSOC ’04, pp. 212–221. ACM (2004)Google Scholar
  30. 30.
    Mendling, J., Ploesser, K., Strembeck, M.: Specifying separation of duty constraints in bpel4people processes. In: BIS’08, pp. 273–284. Springer Verlag (2008)Google Scholar
  31. 31.
    Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(5), 026118 (2001). doi:10.1103/PhysRevE.64.026118 Google Scholar
  32. 32.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98, 404–409 (2001)CrossRefMATHGoogle Scholar
  33. 33.
    Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl 1), 2566–2572 (2002)CrossRefMATHGoogle Scholar
  34. 34.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  35. 35.
    Panteli, N., Davison, R.: The role of subgroups in the communication patterns of global virtual teams. IEEE Trans. Prof. Commun. 48(2), 191–200 (2005)CrossRefGoogle Scholar
  36. 36.
    Petrie, C.: Plenty of room outside the firm. Internet Comput. 14, 92–96 (2010)Google Scholar
  37. 37.
    Psaier, H., Skopik, F., Schall, D., Dustdar, S.: Resource and agreement management in dynamic crowdcomputing environments. In: EDOC (2011)Google Scholar
  38. 38.
    Reka, A., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)CrossRefGoogle Scholar
  39. 39.
    Russell, N., W.M.Aalst, P.V.D.: Evaluation of the bpel4people and ws-humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Technical report, BPM Center Brisbane/ Eindhoven (2007)Google Scholar
  40. 40.
    Satzger, B., Psaier, H., Schall, D., Dustdar, S.: Stimulating skill evolution in market-based crowdsourcing. In: BPM. Lecture Notes in Computer Science. Springer (2011)Google Scholar
  41. 41.
    Schall, D.: Human interactions in mixed systems—architecture, protocols, and algorithms. PhD thesis, Vienna University of Technology (2009)Google Scholar
  42. 42.
    Schall, D.: A human-centric runtime framework for mixed service-oriented systems. Distrib. Parallel Databases 29(5–6), 333–360 (2011). doi:10.1007/s10619-011-7081-z CrossRefGoogle Scholar
  43. 43.
    Schall, D.: Expertise ranking using activity and contextual link measures. Data Knowl. Eng 71(1), 92–113 (2012)CrossRefGoogle Scholar
  44. 44.
    Schall, D., Skopik, F., Dustdar, S.: Expert discovery and interactions in mixed service-oriented systems. IEEE Trans. Services Comput. 5, 233–245 (2012). doi:10.1109/TSC.2011.2 Google Scholar
  45. 45.
    Schall, D., Truong, H.-L., Dustdar, S.: Unifying human and software services in web-scale collaborations. IEEE Internet Comput. 12(3), 62–68 (2008)Google Scholar
  46. 46.
    Shetty, J., Adibi, J.: Discovering important nodes through graph entropy the case of enron email database. In: LinkKDD, pp. 74–81. ACM (2005)Google Scholar
  47. 47.
    Shi, X., Bonner, M., Adamic, L.A., Gilbert, A.C.: The very small world of the well-connected. In: HT ’08, pp. 61–70. ACM (2008)Google Scholar
  48. 48.
    Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic content creation. World Wide Web 13, 33–59 (2010). doi:10.1007/s11280-009-0078-0 CrossRefGoogle Scholar
  49. 49.
    Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-oriented systems. Inf. Syst. 35, 735–757 (2010)CrossRefGoogle Scholar
  50. 50.
    Su, Q., Pavlov, D., Chow, J.-H., Baker, W.C.: Internet-scale collection of human-reviewed data. In: WWW ’07, pp. 231–240. ACM (2007)Google Scholar
  51. 51.
    Thomas, J., Paci, F., Bertino, E., Eugster, P.: User tasks and access control over web services. In: ICWS ’07, pp. 60–69. IEEE (2007)Google Scholar
  52. 52.
    von Ahn, L.: Games with a purpose. IEEE Comput. 39(6), 92–94 (2006)CrossRefGoogle Scholar
  53. 53.
    Vukovic, M.: Crowdsourcing for enterprises. In: Proceedings of the 2009 Congress on Services, pp. 686–692. IEEE Computer Society (2009)Google Scholar
  54. 54.
    Yang, J., Adamic, L., Ackerman, M.: Competing to share expertise: the taskcn knowledge sharing community. In: International Conference on Weblogs and Social Media (2008)Google Scholar
  55. 55.
    Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: WWW, pp. 221–230. ACM (2007)Google Scholar
  56. 56.
    Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., Yongchareon, S.: Implementing process views in the web service environment. World Wide Web 14(1) 27–52 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniel Schall
    • 1
  • Benjamin Satzger
    • 2
  • Harald Psaier
    • 2
  1. 1.Siemens Corporate Technology (CT T CEE)WienAustria
  2. 2.Distributed Systems GroupVienna University of TechnologyWienAustria

Personalised recommendations