Skip to main content

Advertisement

Log in

Effective detection of sophisticated online banking fraud on extremely imbalanced data

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Sophisticated online banking fraud reflects the integrative abuse of resources in social, cyber and physical worlds. Its detection is a typical use case of the broad-based Wisdom Web of Things (W2T) methodology. However, there is very limited information available to distinguish dynamic fraud from genuine customer behavior in such an extremely sparse and imbalanced data environment, which makes the instant and effective detection become more and more important and challenging. In this paper, we propose an effective online banking fraud detection framework that synthesizes relevant resources and incorporates several advanced data mining techniques. By building a contrast vector for each transaction based on its customer’s historical behavior sequence, we profile the differentiating rate of each current transaction against the customer’s behavior preference. A novel algorithm, ContrastMiner, is introduced to efficiently mine contrast patterns and distinguish fraudulent from genuine behavior, followed by an effective pattern selection and risk scoring that combines predictions from different models. Results from experiments on large-scale real online banking data demonstrate that our system can achieve substantially higher accuracy and lower alert volume than the latest benchmarking fraud detection system incorporating domain knowledge and traditional fraud detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggelis, V.: Offline Internet banking fraud detection. In: Proc. of the 1st International Conference on Availability, Reliability and Security, pp. 904–905. IEEE (2006)

  2. Aleskerov, E., Freisleben, B., Rao, B.: CARDWATCH: a neural network based database mining system for credit card fraud detection. In: Proc. of Computational Intelligence for Financial Engineering (CIFEr), pp. 220–226. New York, USA (1997)

  3. Alfuraih, S.I., Sui, N.T., McLeod, D.: Using trusted email to prevent credit card frauds in multimedia products. World Wide Web 5(3), 245–256 (2002)

    Article  Google Scholar 

  4. Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J. Bank. Finance 18(3), 505–529 (1994)

    Article  Google Scholar 

  5. AV-Test.org. http://www.av-test.org/en/statistics/malware/. Accessed 5 Jan 2012

  6. Bay, S.D., Pazzani, M.J.: Detecting group differences: mining contrast sets. Data Mining and Knowledge Discovery 5(3), 213–246 (2001)

    Article  MATH  Google Scholar 

  7. Bayardo, Jr., R.J.: Efficiently mining long patterns from databases. In: Proc. of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 85–93. New York, USA (1998)

  8. Bignell, K.B.: Authentication in an Internet banking environment: towards developing a strategy for fraud detection. In: Proc. of International Conference on Internet Surveillance and Protection (ICISP), Cote d’Azur, France, pp. 23–30. IEEE (2006)

  9. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for credit card fraud detection. In: Proc. of the 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago, USA, pp. 103–106 (1999)

  10. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. Cao, L., Dai, R.: Open Complex Intelligent Systems. Post & Telecom (2008)

  12. Cao, L., Dai, R., Zhou, M.: Metasynthesis: M-Space, M-Interaction and M-Computing for open complex giant systems. IEEE Trans. Syst. Man Cybern., Part A 39(5), 1007–1021 (2009)

    Article  Google Scholar 

  13. Cao, L., Zhang, H., Zhao, Y., Luo, D., Zhang, C.: Combined mining: discovering informative knowledge in complex data. IEEE Trans. Syst. Man Cybern., Part B 41(3), 699–712 (2011)

    Article  Google Scholar 

  14. Chang, R.I., Lai, L.B., Su, W.D., Wang, J.C., Kouh, J.S.: Intrusion detection by backpropagation neural networks with sample-query and attribute-query. Int. J. Comput. Intell. Res. 3(1), 6–10 (2007)

    Google Scholar 

  15. Chanson, S.T., Cheung, T.W.: Design and implementation of a PKI-based end-to-end secure infrastructure for mobile e-commerce. World Wide Web 4(4), 235–253 (2001)

    Article  MATH  Google Scholar 

  16. Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Data Mining and Knowledge Discovery Handbook, pp. 875–886 (2010)

  17. Chernick, M.R.: Bootstrap Methods: A Practitioner’s Guide, 2nd edn. Wiley Series in Probability and Statistics (2007)

  18. Cox, K.C., Eick, S.G., Wills, G.J., Brachman, R.J.: Brief application description; visual data mining: recognizing telephone calling fraud. Data Mining and Knowledge Discovery 1(2), 225–231 (1997)

    Article  Google Scholar 

  19. CyberSource Company: Credit card fraud management. http://www.cybersource.com. Accessed 5 Jan 2012

  20. Dandash, O., Wang, Y., Leand, P.D., Srinivasan, B.: Fraudulent Internet banking payments prevention using dynamic key. J. Networks 3(1), 25–34 (2008)

    Google Scholar 

  21. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Deshmukh, A., Talluru, L.: A rule-based fuzzy reasoning system for assessing the risk of management fraud. Int. J. Intell. Syst. Account. Finance Manage. 7(4), 223–241 (1998)

    Article  Google Scholar 

  23. Dheepa, V., Dhanapal, R.: Analysis of credit card fraud detection methods. Int. J. Recent Trends Eng. 2(3), 126–128 (2009)

    Google Scholar 

  24. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 43–52 (1999)

  25. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: classification by aggregating emerging patterns. In: Proc. of the 2nd International Conference on Discovery Science, Tokyo, Japan, pp.30–42. Springer (1999)

  26. Dorronsoro, J.R., Ginel, F., Sgnchez, C., Cruz, C.: Neural fraud detection in credit card operations. IEEE Trans. Neural Netw. 8(4), 827–834 (1997)

    Article  Google Scholar 

  27. Drummond, C., Holte, R.C.: C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets II, International Conference on Machine Learning, Washington DC (2003)

  28. Edge, K., Raines, R., Grimaila, M., Baldwin, R., Bennington, R., Reuter, C.: The use of attack and protection trees to analyze security for an online banking system. In: Proc. of the 40th Annual Hawaii International Conference on System Sciences (HICSS), Waikoloa, Hawaii (2007)

  29. Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to detect unknown and known network intrusions. Knowl. Inf. Syst. 6(5), 507–527 (2004)

    Article  Google Scholar 

  30. Ghosh, A.K., Schwartzbard, A.: A study in using neural networks for anomaly and misuse detection. In: Proc. of the 8th Conference on USENIX Security Symposium, p. 12. USENIX Association, pp. 141–152. CA, USA (1999)

  31. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  32. Hassibi, K.: Detecting payment card fraud with neural networks. In: Business Applications of Neural Networks, pp. 141–157 (2000)

  33. Hertzum, M., Jrgensen, N., Nrgaard, M.: Usable security and e-banking: ease of use vis-a-vis security. Aust. J. Inf. Syst. 11(2), 52–65 (2004)

    Google Scholar 

  34. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: a rule-based intrusion detection approach. IEEE Trans. Softw. Eng. 21(3), 181–199 (1995)

    Article  Google Scholar 

  35. Karlsen, K.N., Killingberg, T.: Profile based intrusion detection for Internet banking systems. Norwegian University of Science and Technology (2008)

  36. Kou, Y., Lu, C.T., Sirwongwattana, S., Huang, Y.P.: Survey of fraud detection techniques. In: Proc. of International Conference on Networking, Sensing and Control, pp. 749–754. IEEE (2004)

  37. Kovach, S., Ruggiero, W.V.: Online banking fraud detection based on local and global behavior. In: Proc. of the Fifth International Conference on Digital Society, Guadeloupe, France, pp. 166–171 (2011)

  38. Kumar, S., Spafford, E.H.: A pattern matching model for misuse intrusion detection. In: Proc. of the National Computer Security Conference, pp. 11–21 (1994)

  39. Leung, A., Yan, Z., Fong, S.: On designing a flexible e-payment system with fraud detection capability. In: Proc. of IEEE International Conference on e-Commerce Technology, pp. 236–243. IEEE (2004)

  40. Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proc. of the 7th Conference on USENIX Security Symposium. Usenix Association, CA, USA (1998)

  41. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowl. Inf. Syst. 3(2), 131–145 (2001)

    Article  Google Scholar 

  42. Maes, S., Tuyls, K., Vanschoenwinkel, B., Manderick, B.: Credit card fraud detection using Bayesian and neural networks. In: Interactive Image-Guided Neurosurgery, pp. 261–270 (1993)

  43. Mahdi, M.D.H., Rezaul, K.M., Rahman, M.A.: Credit fraud detection in the banking sector in UK: a focus on e-business. In: Proc. of the 4th International Conference on Digital Society (ICDS ’10), St. Maarten, pp. 232–237 (2010)

  44. Mannan, M., van Oorschot, P.C.: Security and usability: the gap in real-world online banking. In: Proc. of the 2007 Workshop on New Security Paradigms (NSPW ’07), pp. 1–14. NY, USA (2008)

  45. Moreau, Y., Preneel, B., Burge, P., Shawe-taylor, J., Stoermann, C., Ag, S., Vodafone, C.C.: Novel techniques for fraud detection in mobile telecommunication networks. In: Proc. of ACTS Mobile Summit, Granada, Spain (1997)

  46. Neill, D.B., Moore, A.W.: Rapid detection of significant spatial clusters. In: Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 256–265. NY, USA (2004)

  47. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6(1), 49–91 (2003)

    Article  Google Scholar 

  48. Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud detection: classification of skewed data. ACM SIGKDD Explor. Newsl. 6(1), 50–59 (2004)

    Article  Google Scholar 

  49. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. Arxiv preprint arXiv:1009.6119 (2010). Accessed 5 Jan 2012

  50. Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4), 1721–1732 (2008)

    Article  Google Scholar 

  51. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Morgan Kaufmann (1993)

  52. Ramamohanarao, K., Fan, H.: Patterns based classifiers. World Wide Web 10(1), 71–83 (2007)

    Article  Google Scholar 

  53. Rosset, S., Murad, U., Neumann, E., Idan, Y., Pinkas, G.: Discovery of fraud rules for telecommunications challenges and solutions. In: Proc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 409–413. NY, USA (1999)

  54. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2010)

  55. Ryan, J., Lin, M.J., Miikkulainen, R.: Intrusion detection with neural networks. In: Proc. of Conference on Advances in Neural Information Processing Systems, pp. 943–949. MIT Press (1997)

  56. Srivastava, A., Kundu, A., Sural, S., Majumdar, A.K.: Credit card fraud detection using hidden Markov model. IEEE Trans. Dependable Secure Comput. 5(1), 37–48 (2008)

    Article  Google Scholar 

  57. Syeda, M., Zhang, Y.Q., Pan, Y.: Parallel granular neural networks for fast credit card fraud detection. In: Proc. of International Conference on Fuzzy Systems, HI, USA, pp. 572–577 (2002)

  58. Smaha, S., Winslow, J.: Misuse detection tools. Comput. Secur. J. 10(1), 39–49 (1994)

    Google Scholar 

  59. Taniguchi, M., Haft, M., Hollmén, J., Tresp, V.: Fraud detection in communication networks using neural and probabilistic methods. In: Proc. of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, WA, USA, pp. 1241–1244 (1998)

  60. Ureche, O., Plamondon, R.: Digital payment systems for Internet commerce: the state of the art. World Wide Web 3(1), 1–11 (2000)

    Article  MATH  Google Scholar 

  61. Wang, L., Zhao, H., Dong, G., Li, J.: On the complexity of finding emerging patterns. Theor. Comp. Sci. 335(1), 15–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newsl. 6(1), 7–19 (2004)

    Article  Google Scholar 

  63. WI-IAT 2011 Panel on Wisdom Web of Things (W2T): Fundamental issues, challenges and potential applications. wi-iat2011.org. Accessed 5 Jan 2012

  64. Zhong, N., Liu, J., Yao, Y.Y.: In search of the wisdom web. IEEE Comput. 35(11), 27–31 (2002)

    Article  Google Scholar 

  65. Zhong, N., Liu, J., Yao, Y.Y.: Envisioning intelligent information technologies through the prism of web intelligence. Commun. ACM 50(3), 89–94 (2007)

    Article  Google Scholar 

  66. Zhong, N., Ma, J.H., Huang, R.H., Liu, J.M., Yao, Y.Y., Zhang, Y.X., Chen, J.H.: Research challenges and perspectives on Wisdom Web of Things (W2T). J. Supercomputing (2010). doi:10.1007/s11227-010-0518-8

    Google Scholar 

  67. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Li, J., Cao, L. et al. Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web 16, 449–475 (2013). https://doi.org/10.1007/s11280-012-0178-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-012-0178-0

Keywords

Navigation