Mesoscopic analysis of networks with genetic algorithms

Abstract

The detection of communities is an important problem, intensively investigated in recent years, to uncover the complex interconnections hidden in networks. In this paper a genetic based approach to discover communities in networks is proposed. The algorithm optimizes a simple but efficacious fitness function able to identify densely connected groups of nodes with sparse connections between groups. The method is efficient because the variation operators are modified to take into consideration only the actual correlations among the nodes, thus sensibly reducing the search space of possible solutions. Experiments on synthetic and real life networks show the ability of the method to successfully detect the network structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arenas, A., Diaz-Guilera, A.: Synchronization and modularity in complex networks. Eur. Phys. J. ST 143, 19–25 (2007)

    Article  Google Scholar 

  2. 2.

    Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. arXiv:physics/0703218v2 (2008)

  3. 3.

    Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. P10008 (2008)

  4. 4.

    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E70, 066111 (2004)

    Google Scholar 

  5. 5.

    Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005)

  6. 6.

    Danon, L., Duch, J., Arenas, A., Díaz-Guilera, A.: Community structure identification. Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, pp. 93–113. World Scientific (2007)

  7. 7.

    Firat, A., Chatterjee, S., Yilmaz, M.: Genetic clustering of social networks using random walk. Comput. Stat. Data Anal. 51(12), 6285–6294 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. U.S.A. 104(1), 36–41 (2007)

    Article  Google Scholar 

  10. 10.

    Fortunato, S., Castellano, C.: Community structure in graphs. arXiv:0712.2716v1 [physics.soc-ph] (2007)

  11. 11.

    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    , Gleiser, P.M., Danon, L.: Community structure in Jazz. Adv. Complex Systems 6(4), 565–573 (2003)

    Article  Google Scholar 

  13. 13.

    Gog, A., Dumitrescu, D., Hirsbrunner, B.: Community detection in complex networks using collaborative evolutionary algorithms. In: 9th European Conference on Artificial Life (ECAL’07), pp. 886–894 (2007)

  14. 14.

    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing (1989)

  15. 15.

    Good, B.H., de Montjoye, Y., Clauset, A.: The performance of modularity maximization in practical contexts. Phys. Rev. E 81(4), 046106 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Harbor Mich. (1975)

  17. 17.

    Hopcroft, J.E., Khan, O., Kulis, B., Selman, B.: Natural communities in large linked networks. In: Proc. International Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 541–546 (2003)

  18. 18.

    Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 470, 651–655 (2000)

    Google Scholar 

  19. 19.

    Lancichinetti, A., Fortunato, S., Radicchi, F.: New benchmark in community detection. arXiv:0805.4770v2 [physics.soc-ph] (2008)

  20. 20.

    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure of complex networks. New J. Phys. 11(033015) (2009)

  21. 21.

    Leskovec, J., Lang, K., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: Proc. Int. World Wide Web Conference (WWW 2010), pp. 631–640 (2010)

  22. 22.

    Lipczak, M., Milios, E.: Agglomerative genetic algorithm for clustering in social networks. In: Proc. Genetic and Evolutionary Computation Conference (GECCO’09), pp. 1243–1250 (2003)

  23. 23.

    Lozano, S., Duch, J., Arenas, A.: Analysis of large social datasets by community detection. Eur. Phys. J. ST 143, 257–259 (2007)

    Article  Google Scholar 

  24. 24.

    Lusseau, D.: The emergent properties of dolphin social network. In: Biology Letters, Proc. R. Soc. London B (suppl.) (2003)

  25. 25.

    Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web J. doi:10.1007/s11280-011-0155-z (2012)

    MATH  Google Scholar 

  26. 26.

    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E69, 066133 (2004)

    Google Scholar 

  27. 27.

    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582 (2006)

    Article  Google Scholar 

  28. 28.

    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E69, 026113 (2004)

    Google Scholar 

  30. 30.

    Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Proc. of 3rd Annual Conference on Genetic Algorithms, pp. 2–9 (1989)

  31. 31.

    Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  33. 33.

    Schuetz, P., Caflish, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Phys. Rev. E 78(026112) (2008)

  34. 34.

    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman (1973)

  35. 35.

    Tasgin, M., Bingol, A.: Communities detection in complex networks using genetic algorithms. In: Proc. of the European Conference on Complex Systems (ECSS’06) (2006)

  36. 36.

    Tomassini, M.: Parallel and distributed evolutionary algorithms: a review. In: Chichester et al. (eds) Evolutionary Algorithms in Engineering and Computer Science, J. Wiley and Sons (1999)

  37. 37.

    Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. arXiv:cs/0702048v1 (2007)

  38. 38.

    Watt, D.J.: Small Worlds. Princeton University Press (1999)

  39. 39.

    Wei, F., Quian, W., Wang, C., Zhou, A.: Detecting overlapped communities in networks. World Wide Web J. 12, 235–261 (2009)

    Article  Google Scholar 

  40. 40.

    Xiaodong, D., Cunrui, W., Xiangdong, L., Yanping, L.: Web community detection model using particle swarm optimization. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC 2008), pp. 1074–1079 (2009)

  41. 41.

    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clara Pizzuti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pizzuti, C. Mesoscopic analysis of networks with genetic algorithms. World Wide Web 16, 545–565 (2013). https://doi.org/10.1007/s11280-012-0174-4

Download citation

Keywords

  • genetic algorithms
  • data mining
  • clustering
  • community detection
  • networks