Skip to main content

Semantic-based Merging of RSS Items

Abstract

Merging XML documents can be of key importance in several applications. For instance, merging the RSS news from same or different sources and providers can be beneficial for end-users in various scenarios. In this paper, we address this issue and explore the relatedness measure between RSS elements. We show here how to define and compute exclusive relations between any two elements and provide several predefined merging operators that can be extended and adapted to human needs. We also provide a set of experiments conducted to validate our approach.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aldendefer, M.S., Blashfield, R.K.: Cluster analysis. Sage, Beverly Hills (1984)

    Google Scholar 

  2. 2.

    Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration of heterogeneous information sources. Data Knowl Eng 36, 215–249 (2001)

    MATH  Article  Google Scholar 

  3. 3.

    Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1–3), 217–239 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput Linguist 32(1), 13–47 (2006)

    Article  Google Scholar 

  5. 5.

    Chawathe, S.S.: Comparing hierarchical data in external memory. In VLDB '99: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 90–101. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  6. 6.

    Cohen, W.: A web-based information system that reasons with structured collections of text. In Proceedings of Autonomous Agents’98 (1998)

  7. 7.

    Dalamagas, T., Cheng, T., Winkel, K.-J., Sellis, T.K.: A methodology for clustering XML documents by structure. Inf. Syst. 31(3), 187–228 (2006)

    Article  Google Scholar 

  8. 8.

    Flesca, S., Manco, G., Masciari, E., Pontieri, L.: Fast detection of xml structural similarity. IEEE Trans. Knowl. Data Eng. 17(2), 160–175 (2005). Student Member-Andrea Pugliese

    Article  Google Scholar 

  9. 9.

    Garcia, I., Ng, Y.-K.: Eliminating redundant and less-informative RSS news articles based on word similarity and a fuzzy equivalence relation. ICTAI 465–473 (2006)

  10. 10.

    Getahun, F., Tekli, J., Atnafu, S., Chbeir, R.: Towards efficient horizontal multimedia database fragmentation using semantic-based predicates implication. In XXII Simposio Brasileiro de Banco de Dados, 15–19 de Outubro, Jo ~ ao Pessoa, Para ba, Brasil, Anais, Proceedings, pp. 68–82 (2007)

  11. 11.

    Getahun, F., Tekli, J., Chbeir, R., Viviani, M., Yétongnon, K.: Relating RSS News/Items. ICWE 442-452 (2009)

  12. 12.

    Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18, 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  13. 13.

    Grabs, T., Schek, H.-J.: Generating vector spaces on-the-fly for flexible XML retrieval. In Proceedings of the ACM SIGIR Workshop on XML and Information Retrieval, Tampere, Finland, pp. 4–13. ACM (2002)

  14. 14.

    Grahne, G., Mendelzon, A.: Tableau techniques for querying information sources through global schemas. In Proceedings of the 7th International Conference on Database Theory (ICDT’99), Lecture Notes in Computer Science. Springer (1999)

  15. 15.

    Gulli, A.: http://www.di.unipi.it/~gulli/ (2009)

  16. 16.

    Gustafson, N. Pera, M.S., Ng, Y.-K.: Generating fuzzy equivalence classes on RSS news articles for retrieving correlated information. ICCSA, Springer-Verlag, Berlin, Heidelberg, pp. 232–247 (2008)

  17. 17.

    Halevy, A.Y.: Answering queries using views: a survey. The VLDB Journal 10(4), 270–294 (2001)

    MATH  Article  Google Scholar 

  18. 18.

    Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R.: Template-based wrappers in the TSIMMIS system. In Proceedings of ACM SIGMOD’97. ACM (1997)

  19. 19.

    Hammersley, B.: Content Syndication with RSS. O’Reilly & Associates, San Francisco (2003)

    Google Scholar 

  20. 20.

    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Rec. 25(2), 205–216 (1996)

    Article  Google Scholar 

  21. 21.

    Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    MATH  Article  Google Scholar 

  22. 22.

    Hubert, L.J., Levin, J.R.: A general statistical framework for accessing categorical clustering in free recall. Psychol. Bull. 83, 1072–1082 (1976)

    Article  Google Scholar 

  23. 23.

    Hunter, A., Liu, W.: Fusion rules for merging uncertain information. Inform. Fusion 7(1), 97–134 (2006)

    Google Scholar 

  24. 24.

    Hunter, A., Liu, W.: Merging uncertain information with semantic heterogeneity in XML. Knowl. Inf. Syst. 9(2), 230–258 (2006)

    Article  Google Scholar 

  25. 25.

    Hunter, A., Summerton, R.: Fusion rules for context-dependent aggregation of structured news reports. J Appl Non-Class Log. 14(3), 329–366 (2004)

    MATH  Article  Google Scholar 

  26. 26.

    Hunter, A., Summerton, R.: A knowledge-based approach to merging information. Knowl.-Based Syst. 19(8), 647–674 (2006)

    Article  Google Scholar 

  27. 27.

    Hunter, A., Summerton, R.: Propositional fusion rules. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 7th European Conference, ECSQARU 2003, Aalborg, Denmark, July 2-5, 2003. Proceedings, Lecture Notes in Computer Science, pp. 502–514. Springer (2003)

  28. 28.

    Hunter, A., Summerton, R.: Propositional fusion rules. In: LNCS, vol. 2711, pp. 502–514 Springer

  29. 29.

    Jardine, N., Sibson, R.: Mathematical taxonomy. Wiley, New York (1971)

    MATH  Google Scholar 

  30. 30.

    Kade, A.M., Heuser, C.A.: Matching XML documents in highly dynamic applications. Proceeding of the Eighth ACM symposium on Document engineering ISBN:978-1-60558-081-4, Sao Paulo, Brazil, pp. 191–198 (2008)

  31. 31.

    King, B. Step-wise Clustering Procedures. J. Am. Stat. Assoc. 69, 86–101

  32. 32.

    Konieczny, S., Pérez, R.P.: Merging with integrity constraints. In ECSQARU '95: Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 233–244. Springer-Verlag, London (1999)

    Google Scholar 

  33. 33.

    Konieczny, S., Pérez, R.P.: On the logic of merging. In Principles of knowledge representation and reasoning (KR), pp. 488–498 (1998)

  34. 34.

    Krogstie, J. Opdahl, A.L., Sindre, G.: Generic schema merging, pp. 127–141, LNCS 4495 Springer-Verlag Berlin Heidelberg (2007)

  35. 35.

    La Fontaine, R.: Merging XML files: A new approach providing intelligent merge of XML data sets. In Proceedings of XML Europe ‘02 (2002)

  36. 36.

    Lau, H., Ng, W: A Unifying framework for merging and evaluating XML information. DASFAA '05, Proceedings, volume 3453 of Lecture Notes in Computer Science, pp. 81–94. Springer (2005)

  37. 37.

    Lin, D.: An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning, pp. 296–304, Morgan Kaufmann Publishers Inc. (1998)

  38. 38.

    Lindholm, T.: XML three-way merge as a reconciliation engine for mobile data. In MobiDe '03: Proceedings of the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 93–97. ACM, New York (2003)

    Book  Google Scholar 

  39. 39.

    Lindholm, T.: A three-way merge for XML documents. In DocEng '04: Proceedings of the 2004 ACM Symposium on Document Engineering, pp. 1–10. ACM, New York (2004)

    Book  Google Scholar 

  40. 40.

    McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  41. 41.

    Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179 (1985)

    Article  Google Scholar 

  42. 42.

    Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In Proceedings of the Fifth International Workshop on the Web and Databases, WebDB 2002, pp. 61–66. University of California (2002)

  43. 43.

    Pera, M.S., Ng, Y.-K.: Finding similar RSS news articles using correlation-based phrase matching. KSEM 336–348 (2007)

  44. 44.

    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Google Scholar 

  45. 45.

    Poulovassilis, A., McBrien, P.: A general formal framework for schema transformation. Data Knowl Eng 28, 47–71 (1998)

    MATH  Article  Google Scholar 

  46. 46.

    Princeton University Cognitive Science Laboratory. WordNet: a lexical database for the English language. http://wordnet.princeton.edu/

  47. 47.

    Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11, 95–130 (1999)

    MATH  Google Scholar 

  48. 48.

    Richardson, R., Smeaton, A.F.: Using wordnet in a knowledge-based approach to information retrieval. Technical Report CA-0395, School of Computer Applications, Trinity College, Dublin, Ireland (1995)

  49. 49.

    RSS Advisory Board. RSS 2.0 Specification. http://www.rssboard.org/

  50. 50.

    Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San Francisco (1973)

    MATH  Google Scholar 

  51. 51.

    Tekli, J. Chbeir, R., Ytongnon, K.: A hybrid approach for xml similarity. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plasil, F. (eds.) SOFSEM '07, Proceedings, vol. 4362 of Lecture Notes in Computer Science, pp. 783–795. Springer (2007)

  52. 52.

    Ullman, J.D.: Information integration using logical views. In ICDT '97: Proceedings of the 6th International Conference on Database Theory, pp. 19–40. Springer-Verlag, London (1997)

    Google Scholar 

  53. 53.

    Wu, S., Manber, U., Myers, G., Miller, W.: An O(NP) sequence comparison algorithm. Inf. Process Lett. 35(6), 317–323 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  54. 54.

    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138, Morristown, NJ, USA (1994). Association for Computational Linguistics

  55. 55.

    WWW Consortium. The document object model, http://www.w3.org/DOM

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fekade Getahun Taddesse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taddesse, F.G., Tekli, J., Chbeir, R. et al. Semantic-based Merging of RSS Items. World Wide Web 13, 169–207 (2010). https://doi.org/10.1007/s11280-009-0074-4

Download citation

Keywords

  • RSS
  • merging
  • document relatedness
  • clustering
  • merging operators