Skip to main content
Log in

InP Photonic Integrated All-Optical Wavelength Conversion of 128 GBaud DP-16QAM Signals Using XGM in SOAs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, we report a cross gain modulation (XGM)-based Indium Phosphide (InP) photonic integrated wavelength conversion of 128 GBaud DP-16QAM signals in semiconductor optical amplifiers (SOAs). An Indium Phosphide photonic integrated circuit (InP-PIC) is most advanced platform for variety of applications including free space optical communications, microwave photonics, and LiDAR (light detection and ranging). The InP-PIC consists two cascaded Semiconductor optical amplifiers (SOAs), integrated band pass filter and a delay-line interferometer (DLI) filter to exploit double stage cross gain modulation (XGM). The wavelength converter is characterized at various power levels over a wide range of converted wavelengths. The system performance is analyzed using bit error rate (BER), Extinction ratio (ER), ON-OFF gain and conversion efficiency (CE). BER is measured over a received power range of -12 dBm to 4 dBm. At \( {\varvec{B}\varvec{E}\varvec{R}=10}^{-9}\), power penalties are lowered to less than 1 dB for down-converting signals and 2 dB for up-converting signals, respectively. A 12 dB gain in CE is achieved over a 60 nm frequency shift. Measured valued of ER are 15.2 dB, 14.5 dB, and 12.95 dB for back-to-back (b2b), down-conversion, and up-conversion at 128 GBaud (1 Tbps) spanning a wavelength range of 35 nm from 1525 nm to 1565 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Yoo, S. J. B. (2022). Prospects and challenges of Photonic switching in Data centers and Computing systems. J Lightw Technol, 40(8), 2214–2243.

    Article  Google Scholar 

  2. Mendinueta, J. M. D., Shinada, S., Hirota, Y., Furukawa, H., Wada, N., High-Capacity Super-Channel-Enabled Multi-Core Fiber Optical Switching System for Converged Inter/Intra Data Center and Edge Optical Networks, IEEE Journal of Selected Topics in Quantum Electronics, 26(4),

  3. Kaur, H., Kaler, R. (2020), SOA-MZI based 4 × 4 interconnected crossbar photonic wavelength switching for datacenter load balancing, Optical Engineering, 59(11), 117109,

  4. Raja, A. S., Lange, S., Karpov, M., Shi, K., Fu, X., Behrendt, R., Cletheroe, D., Lukashchuk, A., Haller, I., Karinou, F., Thomsen, B., Jozwik, K., Liu, J., Costa, P., Kippenberg, T. J., & Ballani, H. (2021). Ultrafast optical circuit switching for data centers using integrated soliton microcombs, Nature Communications, 12, 5867.

  5. Parashuram, C., Kumar, (2022). Suppression of Four Wave Mixing Effects Under Different Spectrally Efficient Modulation Techniques in Hybrid DWDM-OTDM Systems, Indian Journal of Pure and Applied Physics (IJPAP), 60, 8.

  6. Wei, W., Li, Q., Wang, Y., & Duan, J. Erbium-doped fiber laser with switchable wavelength generation based on tunable filter and dual-pass mach-zehnder filter incorporated with fiber delay line, 97(8), Physica Scripta, 2022.

  7. Akiyama, T., Kuwatsuka, H., Hatori, N., Nakata, Y., Ebe, H., & Sugawara, M. (2002). Symmetric highly efficient wavelength conversion based on four-wave mixing in quantum dot optical amplifiers. IEEE Photon Technol Lett, 14, 1139–1141.

    Article  Google Scholar 

  8. Otsubo, K., Akiyama, T., Kuwatsuka, H., Hatori, N., Ebe, H., & Sugawara, M. (2005). Automatically controlled C-band wavelength conversion with constant output power based on four-wave mixing in SOAs. IEICE Trans Electron, E88-C, 2358–2365.

    Article  Google Scholar 

  9. Said, Y., Rezig, H., & Bouallegue, A. (2010). Performance evaluation of Wavelength Conversion using a Wideband Semiconductor Optical Amplifier at 40 Gbit/s. The Open Optics Journal, 4, 21–28.

    Article  Google Scholar 

  10. Contestabile, G., et al. (Dec., 2010). Cross-gain Modulation in Quantum-dot SOA at 1550 nm. IEEE.

  11. Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally efficient long-Haul Optical networking using 112-Gb/s polarization-multiplexed 16-QAM. Journal of Lightwave Technology, 28, 4.

    Article  Google Scholar 

  12. Richter, T., Elschner, R., Gandhe, A., Petermann, K., & Schubert, C. (2012). Parametric Amplification and Wavelength Conversion of single- and dual-polarization DQPSK signals. IEEE Journal of Selected Topics in Quantum Electronics, 18, 2.

    Article  Google Scholar 

  13. Hu, H., Jopson, R. M., Gnauck, A. H., Dinu, M., Chandrasekhar, S., Xie, C., & Randel, S. (2015). Parametric amplification wavelength conversion and phase conjugation of a 2.048- Tbit/s WDM PDM 16-QAM signal. Journal of Lightwave Technology, 33, 1286–1291.

    Article  Google Scholar 

  14. Lu, J., Yu, J., Zhou, H., Li, Y., & Chen, L. (2011). Polarization insensitive wavelength conversion based on dual-pump four-wave mixing for polarization multiplexing signal in SOA. Optics Communications, 284, 5364–5371.

    Article  Google Scholar 

  15. Elschner, R., Bunge, C. A., i Coca, A. G., Schmidt-Langhorst, C., Ludwig, R., Schubert, C., & Petermann, K. (2008). Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals. IEEE Journal of Selected Topics in Quantum Electronics, 14, 3.

    Article  Google Scholar 

  16. Hsu, D. Z., Lee, S. L., Gong, P. M., Lin, Y. M., Lee, S. S. W., & Yuang, M. C. (2004). High-efficiency wide-Band SOA-Based Wavelength converters by using dual-pumped four-Wave Mixing and an Assist Beam. IEEE Photon Technol Lett, 16, 8.

    Google Scholar 

  17. Fillion, B., Ng, W. C., Nguyen, A. T., Rusch, L. A., & LaRochelle, S. (2013). Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier. Optics Express, 21(17), 19825–19833.

    Article  Google Scholar 

  18. Mahad, F. D., Supa’at, A. S. M., Idrus, S. M., & Forsyth, D. (2013). Analysis of Semoconductor Optical Amplifier (SOA) Four Wave Mixing (FWM) for future all optical wavelength conversion. Optik- Int J Light and Electron Optics, 124(1), 1–3.

    Article  Google Scholar 

  19. Contestabile, G., Calabretta, N., & Ciaramella, E. (2006). Double-stage Cross-gain Modulation in SOAs: An effective technique for WDM Multicasting. IEEE Photonics Technology Letters, 18, 1.

    Article  Google Scholar 

  20. Kong, X., & Zhao, Y. (2021). All optical wavelength conversion of dual users CO-OFDM system based on FWM in cascade HNLFs. Optical Fiber Technology, 63, 102480.

    Article  Google Scholar 

  21. Lu, G. W., Sakamoto, T., & Kawanishi, T. (2014). Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring. Optics Express 22 (1).

  22. Takasaka, S., & Takahashi, M. (2010). Polarization insensitive arbitrary wavelength conversion in entire C-band using a PM-HNLF, in Proc. 36th Eur. Conf. Opt. Commun., Turin, Italy, Paper Th.9.C.2.

  23. Mirza, J., Kanwal, B., & Ghafoor, S. (2020). Microwave photonic notch filter based on polarisation multiplexing and cross gain modulation in a semiconductor optical amplifier, 56(4), 189–192.

  24. Bontempi, F., Faralli, S., Andriolli, N., & Contestabile, G. (2013). An InP Monolithically Integrated Unicast and Multicast Wavelength Converter. IEEE Photon Technol Lett, 25, 2178–2181.

    Article  Google Scholar 

  25. Ishikawa, H. (2008). Ultrafast all optical signal processing devices. Wiley.

  26. Smit, M., et al. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), Art083001.

    Article  Google Scholar 

  27. Sobhanan, A., Anthur, A., O’Duill, S., Pelusi, M., Namiki, S., Barry, L., Venkitesh, D., & Agrawal, G. P. (2022). Semiconductor optical amplifiers: Recent advances and applications. Advances in Optics and Photonics, 14, 3, 571–651.

    Article  Google Scholar 

  28. Shi, B., Calabretta, N., & Stabile, R. (2022). Emulation and modelling of semiconductor optical amplifier-based all-optical photonic integrated deep neural network with arbitrary depth. Neuromorphic Computing and Engineering, 2, 3.

    Article  Google Scholar 

Download references

Funding

No financial funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to simulation, concept, writing, and review.

Corresponding author

Correspondence to Chakresh Kumar.

Ethics declarations

Ethical Approval

Not applicable.

Confict of Interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashuram, Kumar, C. InP Photonic Integrated All-Optical Wavelength Conversion of 128 GBaud DP-16QAM Signals Using XGM in SOAs. Wireless Pers Commun 135, 1519–1538 (2024). https://doi.org/10.1007/s11277-024-11121-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11121-3

Keywords

Navigation